

Mission Concept: Emergency Relief Constellation

Presentation Outline

- Mission Objective/Requirements
- Mission-Level Trades
- System Architecture
- Concept of Operations
- Imaging Constellation
- Communications Constellation
- Launch Vehicle

Mission Objective/Requirements

Presenter:

Ian Hughes-Wickham

The Customer

The Humphrey and Prudence Trickelbank Foundation was established to support disaster relief activities around the world. Their goal for this mission is to provide satellite assistance to emergency first responders on the ground.

Mission Objective

Provide recurring repeater access and multi-band images of a customer-designated 500 km x 500 km disaster Area of Interest (AOI) within 24 hours of the command time.

Schedule

- The system shall reach 25% capability within 12 hours
- The system shall have full capability within 24 hours
- The system shall have 95% capability at 6 months,
 End-of-Life
- The system cannot be deployed in orbit prior to time of command
- The constellation must deorbit within 5 years after mission completion

Imaging

- Imaging payload shall provide visible (Vis) and near infrared (NIR) images of AOI with a 5 meter per pixel resolution
- 1 daylight image of entire AOI each day
- 3 daylight images of 15% of AOI (determined by customer) at different times each day
 - Above 50 degrees latitude, 15% images not required
- Necessity for thermal infrared (TIR) imaging will be decided by customer on day of launch
 - If TIR imaging is deemed necessary, TIR images of 25% of AOI (determined by customer) shall be taken each day
 - TIR images of AOI require less than 100 meter per pixel resolution
- Images must be provided to customer as quickly as possible

Communications

- The system shall provide beyond line-of-sight communications capability to first responders
- The system shall support entire AOI
- The system shall be compatible with existing UHF communications systems
- The system shall provide repeater capability for 240 minutes/day
- The maximum time without repeater access is 120 minutes
- The minimum communications window is 3 minutes

Launch/Ground

- The systems shall operate in politically stable locations
- The systems shall comply with applicable U.S. and international regulations
- The systems must store for at least 5 years prior to launch
- The system cannot utilize existing government or military infrastructure

Presenter:

Ian Hughes-Wickham

- Orbital Altitude
- Satellite Capability Allocation
- Orbit Variability on Day of Launch
- Satellite Distribution Scheme
- Imaging Spectral Band Allocation
- Common Bus

Orbital Altitude

	LEO	MEO	GEO
Time to Orbit			
Radiation Concerns			
Resolution Requirements			
Deorbit in less than 5 years			
Number of Vehicles			

Outcome: **LEO**

Satellite Capability Allocation

	Same Satellite	Different Satellite
Satellite Complexity		
Optimal Orbit Differences		
Number of Vehicles		

Outcome: Separate Comms and Imaging Satellites

Orbit Variability on Day of Launch

	Variable Orbits	Complete Global Coverage
Number of Satellites		
Number of Orbital Planes		
Launch Site Location		
Excess Coverage		
System Complexity		

Outcome: Variable Orbits

Distribution Scheme

	LV Responsible for Burns	Satellite Responsible for Burns
Time Allocated for Distribution		
Δ V required		
Number of Maneuvers		
Launch Vehicle Complexity		
Satellite Complexity		

Outcome: Satellites will Distribute Themselves

Imaging Spectral Band Allocation

	Separate Satellites	Same Satellite
Thermal Imaging Day of Launch Decision		
Number of Launches		
Coverage Requirements		
Satellite Complexity		

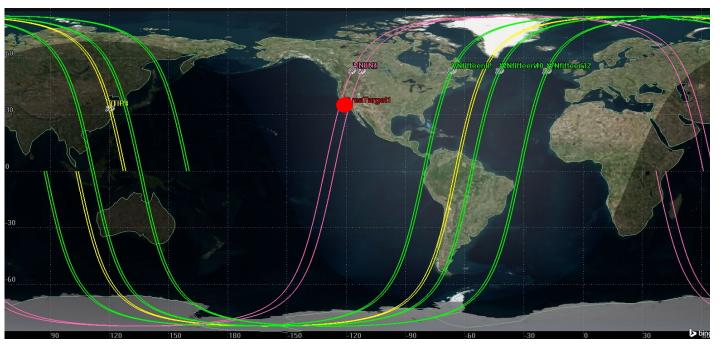
Outcome: Different satellites for Visible/Near IR and Thermal IR

Common Bus

	Different Bus	Same Bus
Development Cost		
Satellite Operations Differences		
Required Launch Vehicle Capability		

Outcome: Satellites with a Common Bus

System Architecture

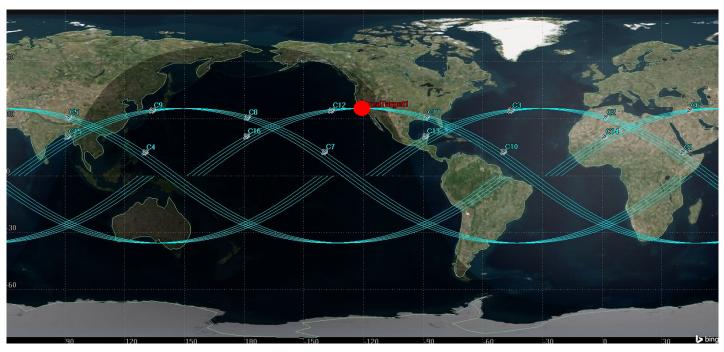

Presenter:

Mazzin Ajamia

Imaging Architecture

Target Area: San Luis Obispo on July 18th, 2017 at 10am

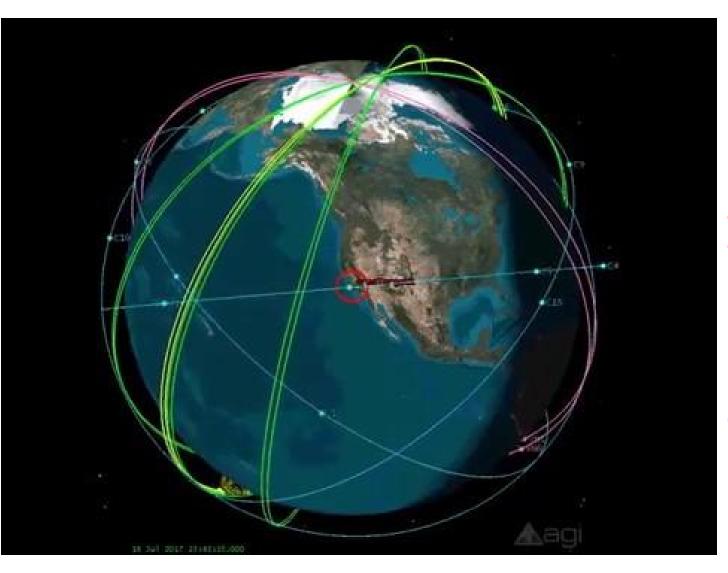
RED = Target Area
PINK = Full Image
Vis/NIR
GREEN = 15%
Vis/NIR
YELLOW = 25%
Image TIR


- 10 planes, 24 satellites
 - 8 sats/full image, Vis/NIR
 - 4 sats/15% image, Vis/NIR
 - 4 sats/25% image TIR

- Circular, sun-synch 567 km altitude, latitude-dependent RAAN spacings
- Satellite groups dispersed in RAAN
 - Images taken at different times of the day

Communications Architecture

Target Area: San Luis Obispo on July 18th, 2017 at 10am


RED = Target Area
BLUE = Satellite
Ground
Tracks

- 4 planes, 16 satellites
 - 4 sats/plane (total)
 - 3 sats/plane (necessary)
 - 1 sat/plane (redundant)
- Circular 625 km altitude,
 latitude-inclination matching
- Planes equally spaced in RAAN
- Satellites spaced 40 degrees apart in true anomaly

System Visualization

Target Area: San Luis Obispo on July 18th, 2017 at 10am

TOTALS

40 satellites 10 planes

RED = Target Area

PINK = Full Image

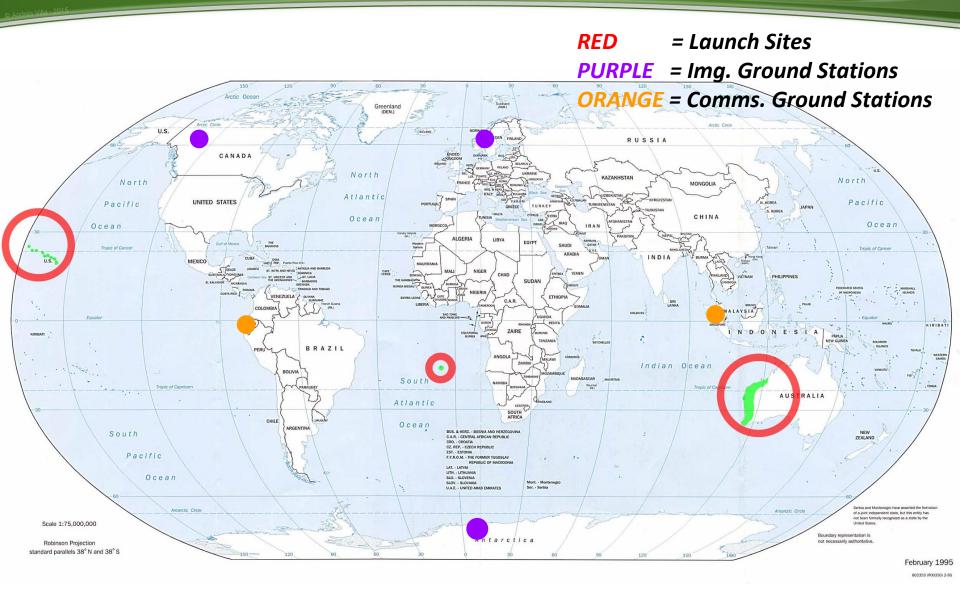
Vis/NIR

GREEN = 15%

Vis/NIR

YELLOW = 25%

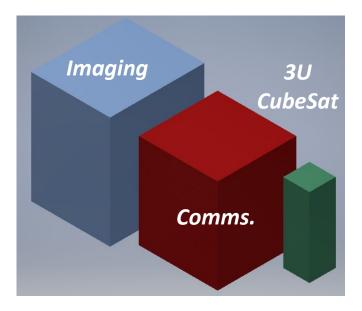
Image TIR


BLUE = Comms.

Ground

Tracks

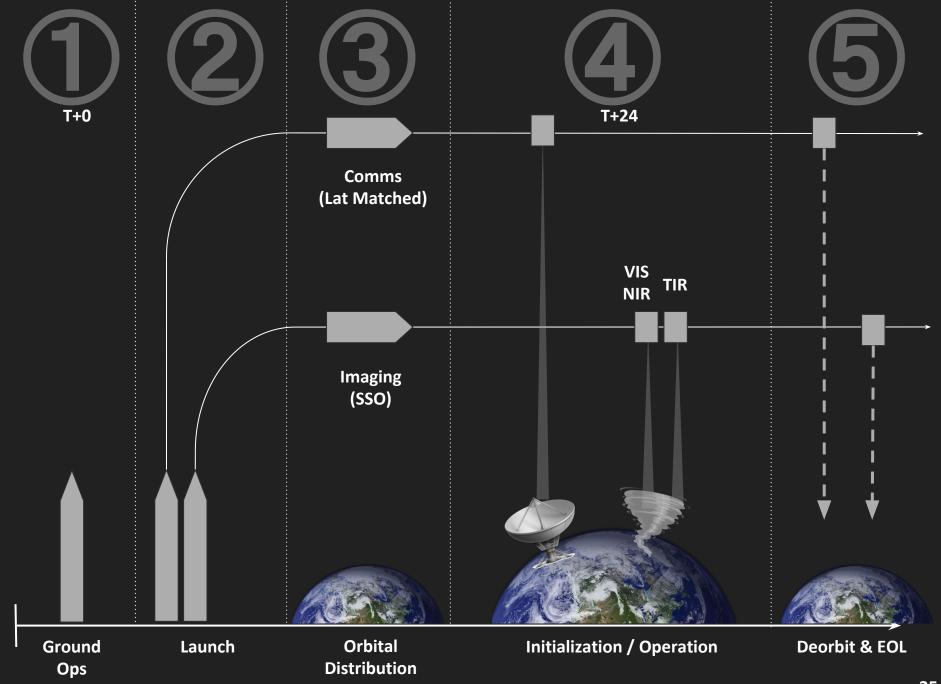
Ground Operations Locations


System Summary

Totals

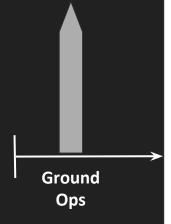
- 40 small satellites
 - 24 imaging satellites in 10 planes
 - 16 communications satellites in 4 planes
- 5 launch sites, 10 launches
- 5 ground stations

	Imaging Satellites	Communication Satellites
Mass (kg)	10.6	10.2
Dimensions (cm)	30 x 36 x 43	30 x 36 x 30
Volume (cm³)	46,440	32,400


Relative Scale

Concept of Operations

Presenter:

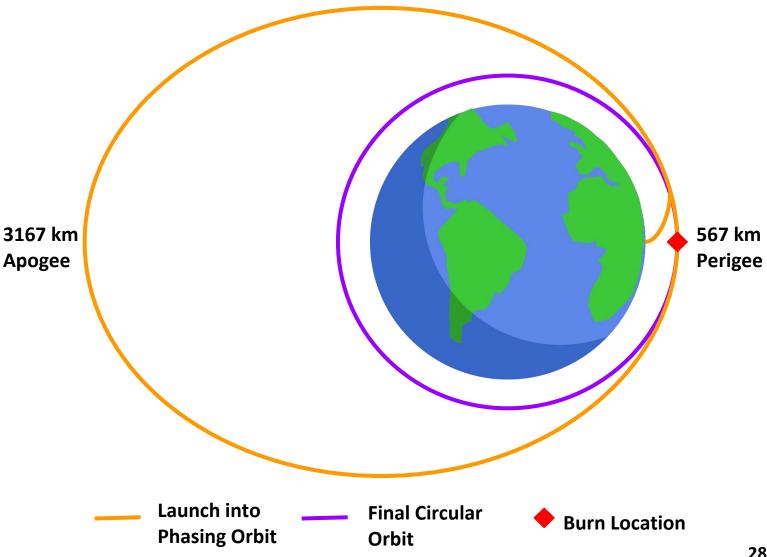

Mazzin Ajamia

Pre-Launch Operations

- 5 year storage capability
 - Fully fueled launch vehicles
 - Satellites fueled integrated
- Program trajectories
- Satellite startup
 - Health checks, testing

Launch

- Launch considerations
 - Parameters affected by AOI latitude
 - Launch order and windows
- Elliptical transfer orbit insertion for phasing


Comms (Lat Matched)

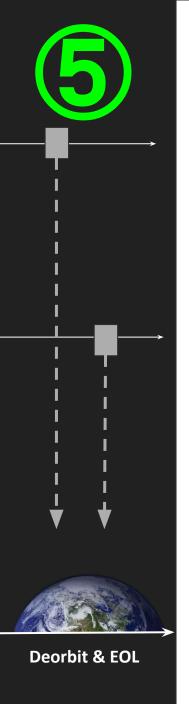
Distribution

Orbital Distribution - Imaging

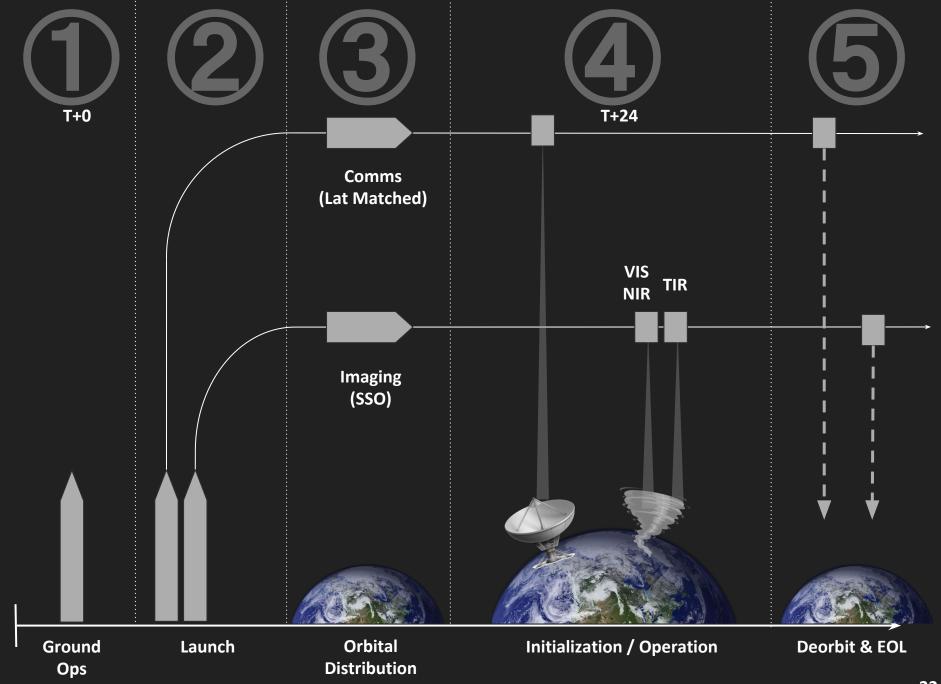

Comms (Lat Matched)

Imaging (SSO)

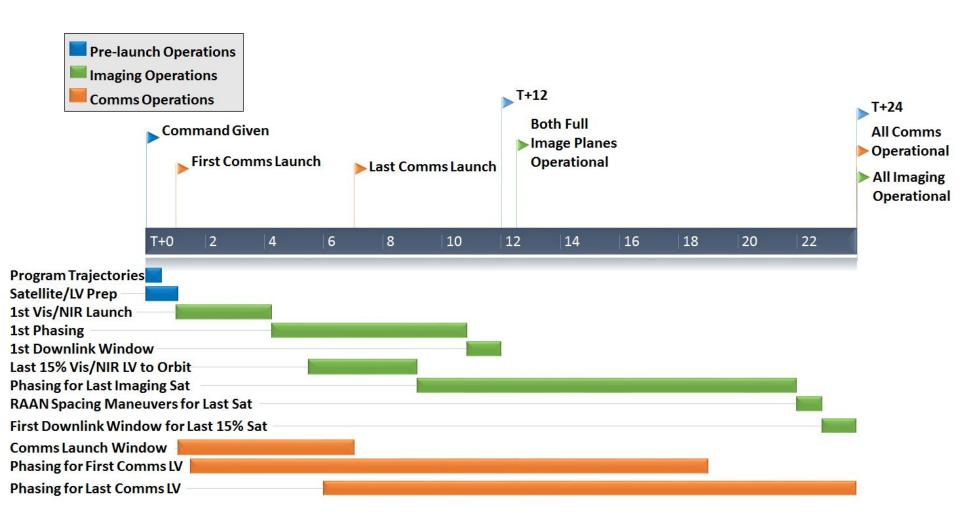
Orbital Distribution


Orbital Distribution - Communications

T+24 **Initialization / Operation**


Initialization/Operation

- Satellites conduct daily operations to fulfill requirements
 - Communications provide repeater access
 - Imaging receive commands and image designated areas


Deorbit & End of Life

- Satellites burn to drop altitude to deorbit within the 5 year requirement
 - Drop perigee to 450 km

24-Hour Timeline

Imaging Constellation

Presenters:

Nic Cordeniz

David Stears

Imaging Constellation

Driving Requirements

- Must image Visible (Vis), Near IR (NIR), and Thermal IR bands (TIR)
- Resolution
 - Vis/NIR 5 m per pixel
 - TIR 100 m per pixel
- Area of Interest (AOI)
 - Vis/NIR
 - 1 daylight image of entire AOI each day
 - 3 daylight images of 15% squares of AOI
 - Determined daily by customer
 - Not required above 50 degrees latitude
 - TIR (if deemed necessary by customer)
 - up to 25% of AOI composed of a minimum of 5% squares
 - Determined daily by customer

Imaging Constellation

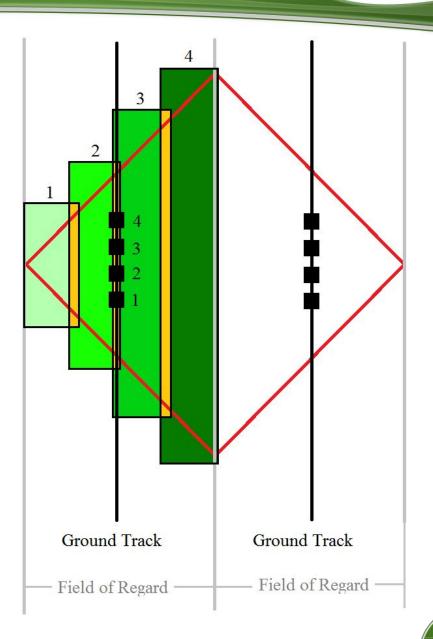
Major Trades

Trade	Status	Baseline
Orbits	Closed	Sun-sync repeat ground track
Sensor Type	Closed	<u>Pushbroom Scanner</u>
Satellite Capability	Closed	Vis/NIR: 94 km swath TIR: 190 km swath
Planes for Auxiliary Images	Closed	<u>2 Planes</u>
Downlink Antenna	Closed	Ku band horn
ACS	Closed	Cold Gas Thrusters

Orbits Overview

- Full Image Groups (Vis/NIR)
 - 2 planes with 4 sats per plane
 - True Anomaly spaced (max 6.5 km separation between first and last satellite in the sky)
 - Other orbital parameters determined by target area
- 15% Groups (Vis/NIR) and 25% Group (TIR)
 - 2 planes with 2 sats per plane
 - True Anomaly spaced sats (max 6.5 km separation)
 - Other orbital parameters determined by target area
 - Three groups total to take three 15% images
 - Groups RAAN spaced to provide time between images (customer requirement)

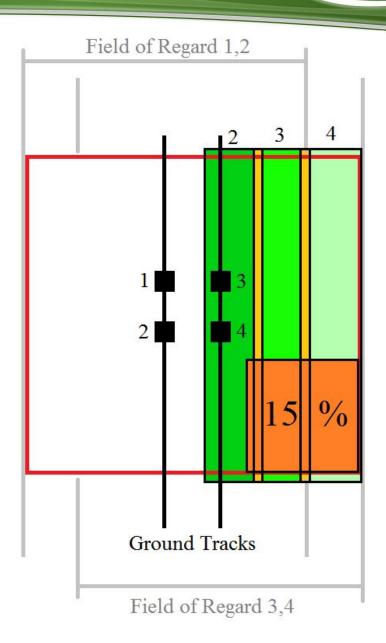
Orbital Scheme: Visible/NIR


Latitude	0° - 50°	50° - 80°	80° - 90°	
Orbit Type	Sun-Synchronous Repeat Ground Track		Polar Repeat Ground Track	
Altitude	567	km	554 km	
Inclination	97.	97.7°		
No. of Planes	8	2	2	
Total No. of Satellites	20	8	8	

Vis/NIR Imaging Scheme Pushbroom Scanner

Entire AOI Groups:

- Max off-nadir slew: 11.3 deg
- Swath width: 94 km
- Overlap: 3% between swaths
- Separate launches for each plane

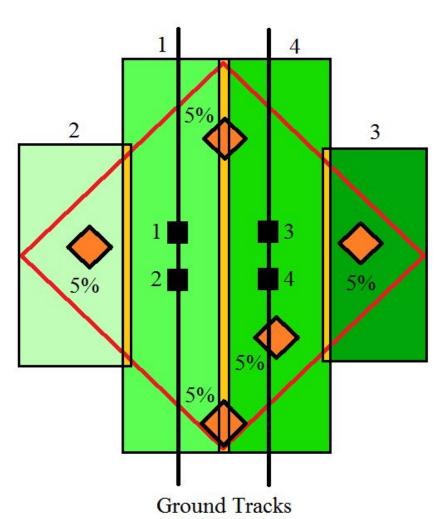

VIS/NIR Imaging Scheme Pushbroom Scanner

15% Groups:

Max off-nadir slew: 18 deg

Swath width: 94 km

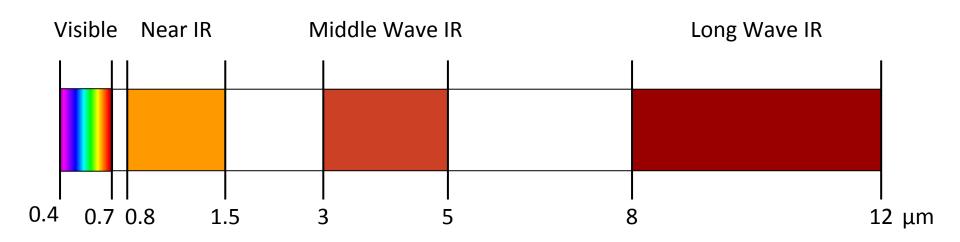
Overlap: 3% between swaths


Orbital Scheme: Thermal IR

Latitude	0° - 80° > 80°	
Orbit Type	Sun-Synchronous Repeat Ground Track	Polar Repeat Ground Track
Altitude	567 km	554 km
Inclination	97.7°	88.4° and 91.6°
No. of Planes	2	
Total No. of Satellites	4	

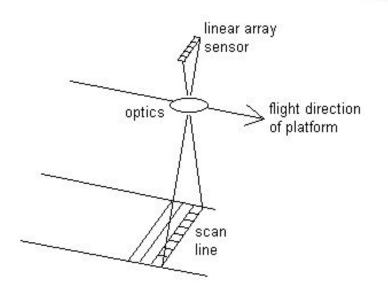
TIR Imaging Scheme Pushbroom Scanner

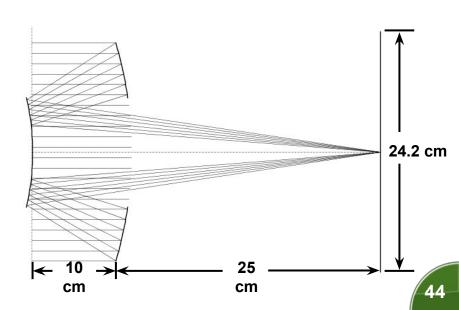
- Max off-nadir slew: 19 deg
- Swath width: 190 km
- Planes RAAN spaced
- Overlap: 3% between swaths
- 25% could be in as many as five 5% areas
- Providing more capability than required



Spectral Bands of Interest

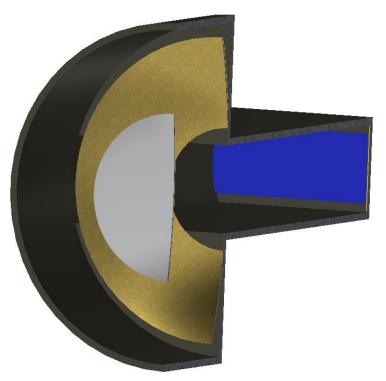
- Visible
 - \circ 0.4-0.7 µm
- Near IR
 - \circ 0.8-1.5 µm


- Middle Wave IR
 - \circ 3-5 μ m
- Long Wave IR
 - \circ 8-12 μm



Optical Payload

- Pushbroom sensor
 - Linear sensor array
- Reflecting telescope
 - Cassegrain design
 - Same optics for both Vis/NIR and TIR
 - Ø25cm x 36.5cm allocated space
- Number of Detector Elements
 - Vis/NIR: 22,000 x 6 bands
 - TIR: 4,300 x 6 bands



Optical Payload

- 22 cm diameter primary mirror
- 12 cm diameter secondary mirror
- 12.2 cm VIS/NIR Optical Sensor
- 24.2 cm TIR Optical Sensor

Optical Sensor Cross-Section View

Image Data

- Vis/NIR Full Image:
 - Uncompressed Data Volume: 30 GB
- Vis/NIR 15% Images:
 - Uncompressed Data Volume: 8 GB
- TIR 25% Images:
 - Uncompressed Data Volume: 0.32 GB
 - Based on 45 m per pixel resolution
- 2:1 compression algorithm used on all images to be downlinked to ground stations

Imaging Satellite Communications

- On-board system for downlinking:
 - Ku-Band
 - Wideband horn, 4.3 x 5.2x 11.2 cm
 - BPSK modulation
- Ground system for downlinking:
 - 2.3 m ground dish to downlink all satellites
 - 48 dB peak gain

Link Budget Downlink of Images		
Frequency	13.75 GHz (Ku)	
Noise Temp	285 K	
Space Loss	180 dB	
Signal to Noise Ratio	9 dB	
Data Rate	400 Mbps	
Gain	14 dB	
Power (RF)	20 W	
Margin	4.3 dB	

Imaging Satellite Communications

- On-board system for TT&C:
 - UHF Band
 - Four whips in phase quadrature, 18 cm length
 - Common TT&C system to comms satellite
 - BPSK modulation
- Ground system for TT&C:
 - Utilizing same ground dish for imaging downlink and TT&C
 - 14.7 dB peak gain for UHF using the same ground dish

TT&C Link Budget	Downlink	Uplink	
Frequency	300	MHz	
Noise Temp	285 K		
Space Loss	146 dB		
Signal to Noise Ratio	10.5 dB		
Data Rate	9.6 k	bit/s	
Gain	0 dB	14.7 dB	
Power (RF)	0.25 W	0.25 W	
Margin	16 dB		

Propulsion System

- SSC: High Performance Green Propellant System Propellant: LMP-103S
 - F = 5 N of directed thrust
 - \circ ISP = 250 s
 - Compact Combustion Chamber and Nozzle
 - Diam ~ 3 cm
 - Length ~ 8 cm

17.8 cm

Source: 2013 ECAPS

Satellite Maneuvers Summary

- On-orbit station-keeping
- De-orbit in 5 years after 6 month lifetime
- ΔV budget

Maneuver	Phasing	Stationkeeping	De-Orbit	Total
Required \Delta V	575 m/s	75 m/s	50 m/s	700 m/s

ADCS: Attitude Determination

- Sensors:
 - Star tracker 3-axis attitude knowledge
 - 3 Sun Sensors 2-axis attitude knowledge
- Attitude knowledge requirement: 0.03 degrees
 - Derived from 0.3 degree pointing requirement (industry standard)
- Fine knowledge required during imaging phase only
 - Star tracker falls out of attitude knowledge requirements at ~1.1 deg/sec

ADCS: Control

- 8 Nozzle ACS Thruster Configuration
 - MOOG SVT01 10 50mN Nitrogen Cold Gas thrusters
 - On opposing faces
- Pointing requirements derived from payload swath width

	Imaging	Downlink	Sun-Tracking
Pointing Requirement (deg)	0.3	7.5	25
Slew Rate (deg/s)	0.003	0.5	0.003

ADCS: Pointing Budget

	Source	X-Axis & Y-Axis [deg]	Z-Axis [deg] (Through Optics)
System	Thermal Error	3e-3	3e-3
Environment	Thermal Deformation	3.7e-3	2.4e-3
	Star Tracker Accuracy	5.5e-3	2.78e-3
	Star Tracker Misalignment	2.0e-5	2.0e-5
AD Sensors	Gyro Misalignment	5.7e-2	5.7e-2
AD Selisors	Gyro Angular Random Walk (max)	1.1e-3	1.1e-3
	Gyro Scale Factor Error	5.1e-6	1.5e-5
Actuator	RCS Thruster Misalignment	2.0e-5	2.0e-5
Main Thruster	Thruster Misalignment	2.0e-5	2.0e-5
Guidance	GPS Position Accuracy	8.97e-6	8.2e-11
Guidance	Clock Error	1.8e-10	1.8e-10
	Total RSS Error (with 25% Contingency)	0.0722	0.0718

Mass Breakdown:

Subsystem	Mass (kg)	Percent of Total
ADCS	0.91	7
Propulsion	2.3	22
Structure	1.4	14
Thermal	0.1	1
Imaging Payload	3	29
Comms	0.18	1.7
TT&C	0.50	4.8
Power	2.2	21
Total	10.6	100

Thermal Considerations:

- High output during payload operation and downlinking
- Phase change materials
- Cold biasing
- Moving Forward:
 - Transient analysis
 - Optimize configuration

Component(s)	Temperature Range, °C	
Most Components	-40 to 80	
Main Propellant	-5 to 50	
RCS/ACS Propellant	0 to 50	
Vis/NIR Payload	0 to 65	
TIR Payload	Less than 57	

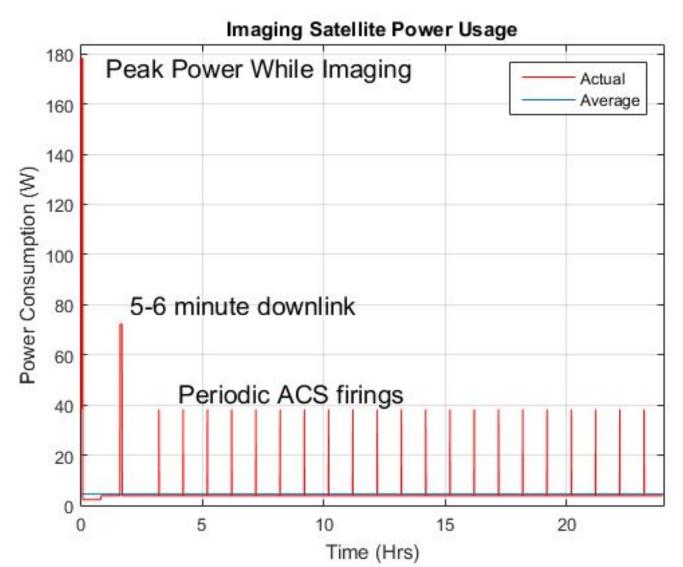
Power Cycle (Operations Timeline)

- Each satellite orbits 15 times per day
 - 1 orbit includes image collection and processing
 - 1 orbit includes image downlink and orbit maintenance
 - Other 13 orbits devoted to recharging the batteries
 - Worst case power mode grouping if target area positioned such that downlinking occurs immediately following image processing. ~ 26 Wh battery usage prior to recharge.

Power Cycle (Operations timeline)

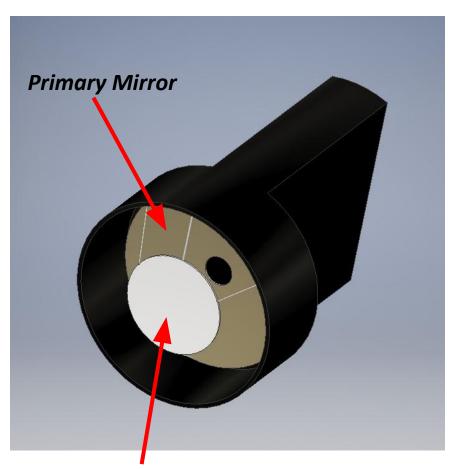
- Average power required: 4.5 W (per 1 day cycle)
- Peak Power: 180W (calibration and imaging)
- 3 Body-mounted solar panels
- 40 Whr of battery storage
- Tumbles at fixed angle offset depending on orbital plane

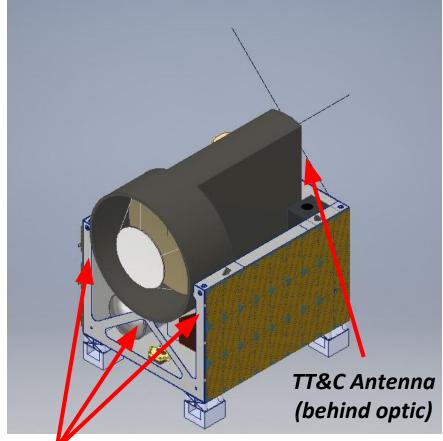
Power Cycle (Operations Timeline)


Daily Cycle Consumes 105 Wh of Energy

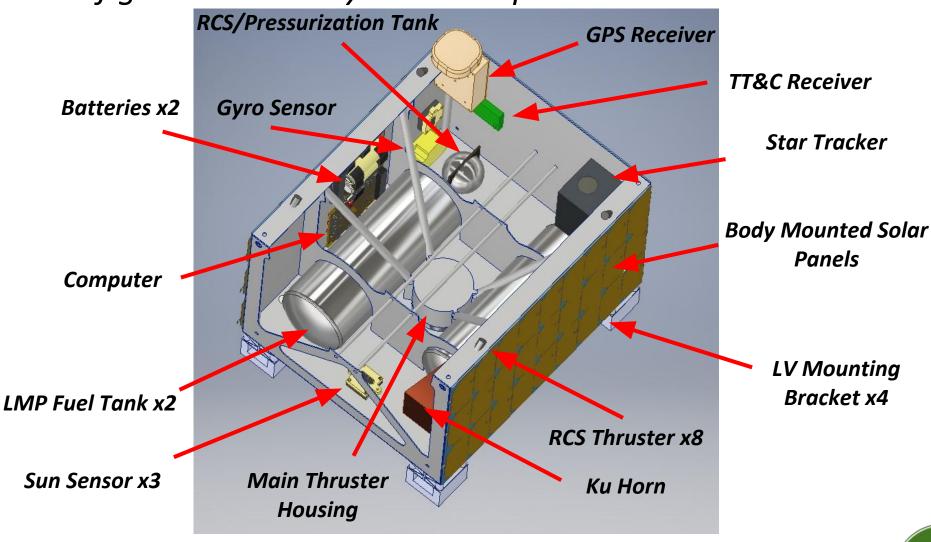
	Payload Oper Orbit	ational	Ground Stat Over Or	_	Remaining 1	3 Orbits
Tasks and	Pointing, Calibrating, and Imaging	10 Wh	Pointing, Downlinking, and TT&C	6.8 Wh		
Corresponding Energy	Compress Image	2 Wh	Correct Orbit	0.2 Wh	Standby Operations	6 Wh each
Required	Standby Operations	3 Wh	Standby Operations	5.5 Wh		
	Totals	15 Wh		12.5 Wh		78 Wh

Note: Placement of these orbits in the daily schedule depends on target location, ground station location, and time the customer determines that pictures are to be taken.




Power Cycle (Operations timeline)

Configuration - Optic Payload



Secondary Mirror

Primary Imaging Payload mounts

Configuration - Subsystem Components

Moving Forward

- Optics
 - Further develop payload design
 - Consider different telescopes for the different bands
- Specific wavelengths for bands of interest
- Focal plane assembly configuration
- Satellite Configuration
 - Thermal and Structural Analysis
- Redundancy and Failure Mitigation
- Cost analysis

Presenter:

Yojar Paz

Customer Requirements

- The system shall provide repeater capability for 240 minutes/day
- The maximum time without repeater access is 120 minutes
- The system shall provide beyond line-of-sight communications capability to first responders
- The minimum communications window is 3 minutes

Major Trades

Trade	Status	Baseline
Orbit Altitude	Closed	625 km
Variable vs. Invariable Orbits	Closed	Variable
Antenna Type	Closed	4 monopole whips in phase quadrature

Orbital Scheme

• LEO altitude trade based on gain, ΔV to launch/deorbit, number of planes and satellites

Constellation Parameters and Allowable Errors

Altitude	Inclination	RAAN Spacing (Between Planes)	True Anomaly Spacing (Between Satellites)	Eccentricity
625 ± 7 km	Latitude ± 0.1°	Equal ± 6°	40°± 6°	0:1e-3

Constellation Scheme vs Coverage Latitude

Latitude Bin	0°-25°, 65°-90°	25°-65°
No. of Satellites	12	16
No. of Planes	3	4

^{*0-16°} covered by 16° inclination from St. Helena launch site

Phasing Scheme

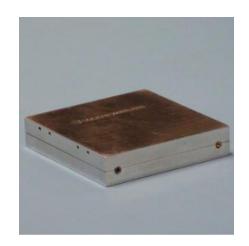
Transfer orbit details

Perigee Altitude	Apogee Altitude	Eccentricity	Period
625 km	918 km	0.0205	1.68 hours

- Phasing takes 16.8 hours
 - 3 orbits to phase each satellite with initial orbit to ensure perigee
- 90 m/s Δ v required for phasing (to circularize)

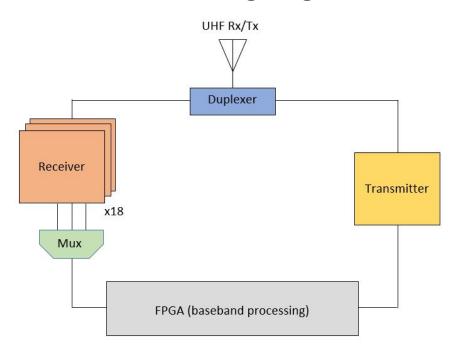
Propulsion System

- Same thruster as Imaging Satellite
- Responsible for phasing insertion and deorbit burns
- Deorbit drops perigee to 450 km


Maneuver	Delta-V (m/s)
Phasing	90
Deorbit	68
Total	158

Payload Design

- First responders using tactical UHF radios
 - Based on Harris XL-200P
 - UHF capability
- UHF repeater
 - 18 Software Defined Radios (SDR)
 - Baseline: Vulcun CSR-SDR-U/U
 - Allows for on-orbit variability of frequency and modulation
 - needed for the worldwide operability



Payload Design

- Under Consideration
 - Designing our own payload radio with 18 receivers, 1
 FPGA, and 1 transmitter
 - Due to our large volume of channels this could save space and avoid over-designing

Link Budget

Link Budget	Uplink: Ground to Satellite	Downlink: Satellite to Ground	
Frequency	454 MHz		
Noise Temp	298 K		
Space Loss	148.8 dB		
Signal to Noise Ratio Required	13 dB		
Data Rate	9600 bps		
Receiver Gain	0 dB	-1 dB	
Transmitter Gain	-1dB	OdB	
Power (RF)	2.5 W	1.5 W	
Margin	3 dB		

Decisions:

- No. of channels: 18
- Based on National Interoperability Plan
- Omni-directional
 Antenna
 - 4 monopole whips in phase quadrature

Doppler Shift and Encryption

- Doppler Shift
 - UHF max doppler shift seen by S/C and AOI: 10.17 kHz
 - Channels spacing: 12.5 KHz
 - Software Defined Radio: Helps counteract shift
- Encryption
 - Secure Communication
 - Only want people in the AOI to receive our communication
 - AES/DES encryption available on our baseline radio

ADCS

- 8 cold gas RCS thrusters
 - Same as imaging satellite
 - Used for accurate phasing/deorbit burns
- Determination Sensor: Sun Sensors

Telemetry, Tracking, and Command

- Use existing payload antenna
 - Separate receiver and transmitter
- Sending/receiving health packets, coverage schedule, etc.
- Utilizing 2 communications ground stations

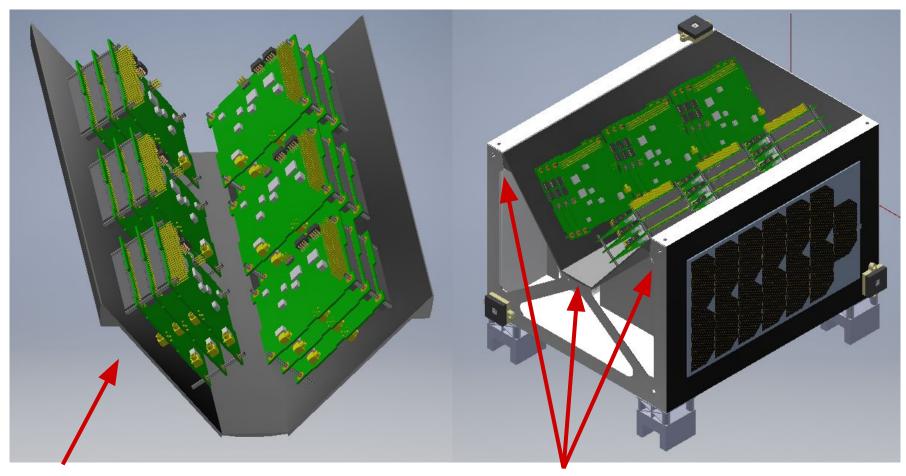
Mass Breakdown

Subsystem	Mass (kg)	Percent of Total
ADCS	0.9	9.0
Propulsion	1.2	12
Structure	1.7	17
Thermal	0.3	3.0
Comms Payload	3.7	36
CD&H	0.5	5.0
TT&C	0.1	1.0
Power	1.8	17
Total	10.2 100	

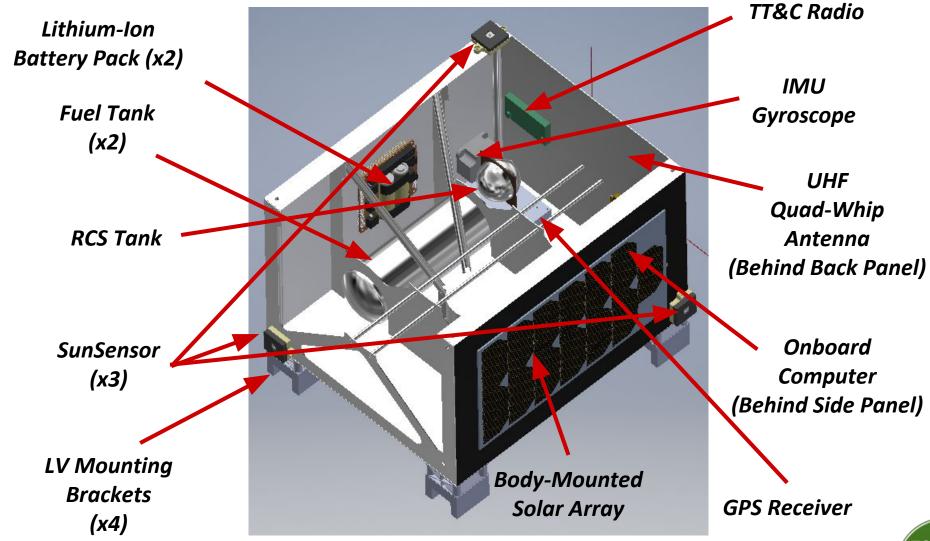


Power

- Standby: 2.3 W
 - In between comms intervals
- Active Payload Power: 63.1 W
 - When above the Area of Interest
- TT&C: 14.8 W
 - During download
- Propulsion Power: 70 W
 - Phasing and Deorbit Maneuvers Only



Power Cycle Graph


Configuration - Communication Payload

3x6x3 Transceiver V-Configuration (18 Total Channels) Primary Comms Payload Mounts in the Same Location as Optical Payload

Configuration - Subsystem Components

Moving Forward

- Thermal Analysis
- Structural Analysis
- Risk/Reliability Study
- Cost Study

Presenters:
Shane Sheehan
Thomas Rohrbach

Critical Considerations

- Time to launch
 - As quickly as possible from time of command to meet operational requirements
- Design
 - Driven primarily by the satellite requirements
- Storability
 - System must remain fully ready for five years
- Versatility
 - Launch vehicle must be able to reach a range of target orbits

Major Trades

Trade	Status	Outcome	
Launch Type: Air vs. Land vs. Sea	Closed	<u>Launch from Land</u>	
Launch Sites: Build vs. Use Pre-existing	Closed	Build Launch Sites	
Launch Vehicle: Design vs. Buy	Closed	<u>Design Launch Vehicle</u>	
Storage Facility: Below vs Above Ground	Closed	Above Ground	

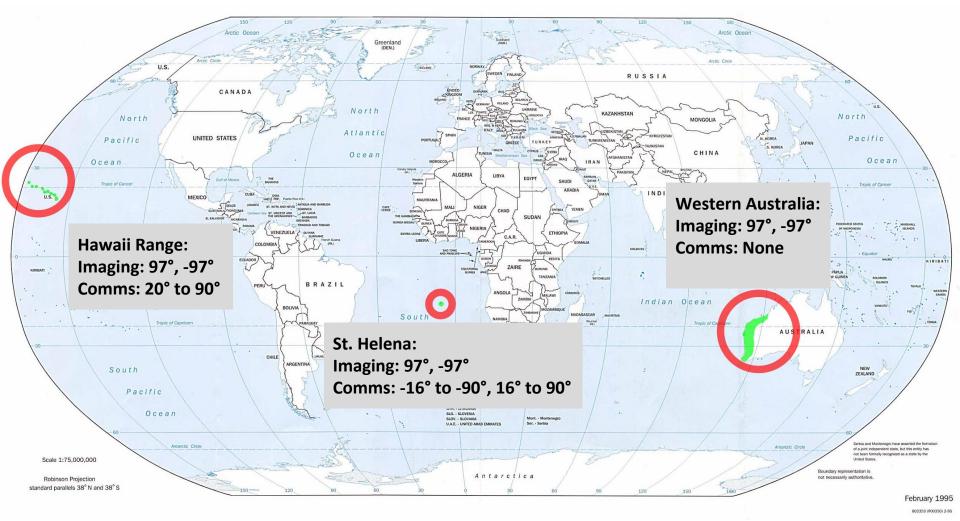
Launch Location Considerations

Desirable Latitudes

- Imaging launches:
 - Far from equator, into both ascending and descending nodes of the 97° sun-synch orbit
- Communications launches:
 - Close to equator, into 0-90° inclination
 - Lat-matching not feasible from latitudes higher in value than orbit inclination

Launch Locations Evaluated by:

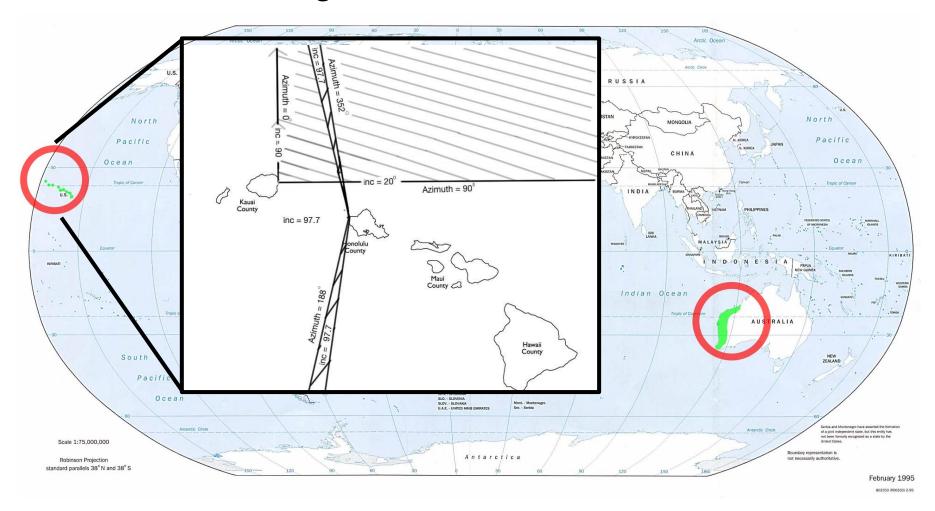
- Launch azimuths to meet required orbit inclinations
- Political stability (evaluated with fragility index)
- Range Safety
- Risk of natural disaster occurring at launch site
- Weather
 - Frequency of rain and stormy weather
 - Upper atmosphere wind shear
 - Average and maximum ground wind speeds


Launch Locations: 3

Launch Control Sites: 5

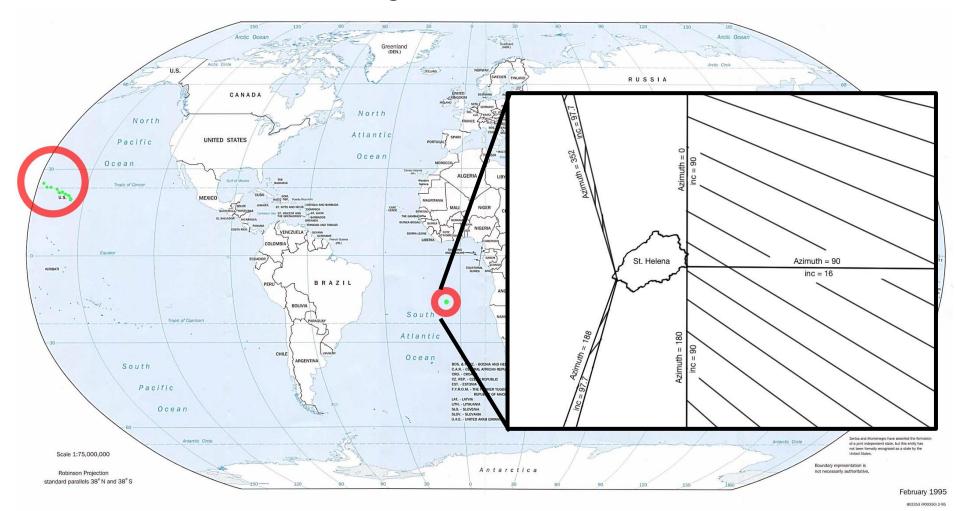
Launch Pads: 10

Ideal Launch Locations for our Architecture

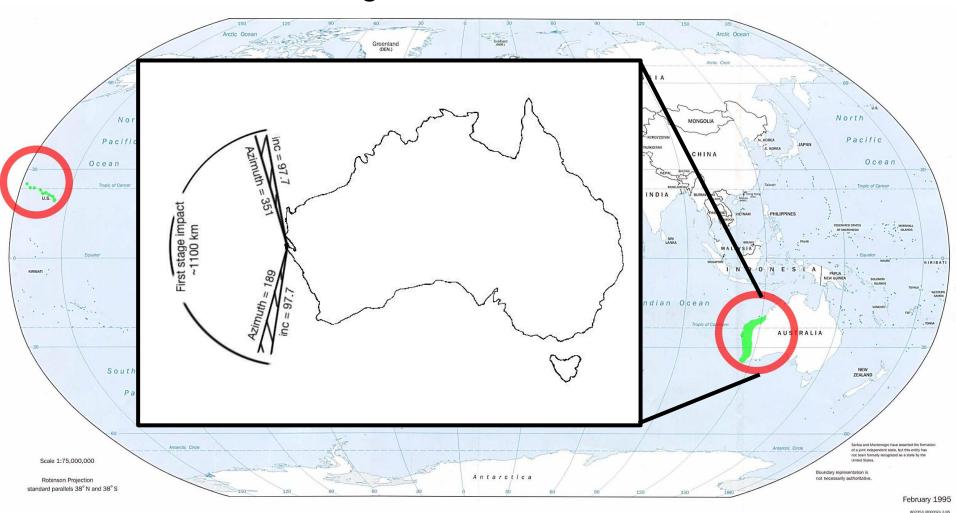

Launch Pad Distribution

10 total launch pads distributed amongst 5 major launch sites

	Imaging	Comms
Hawaii (Oahu, Kauai)	2	1
St. Helena (West and East sides of the island)	1	3
Western Australia	3	



Hawaii Launch Range



St. Helena Launch Range

Australia Launch Range

Pre Launch

Aiming for expedited launch procedure:

- Payload integration facility at each launch location
 - 100,000 ppm clean requirement
 - Umbilical power ~20 V
 - Temp of 0 to 45 °C for batteries
 - Temp of -90 to 120 °C for fuel
 - Humidity level 35 +/- 15%
- Rolling maintenance checks for risk mitigation
- Fully autonomous launch procedure
 - Retracting the hangar
 - Upload trajectories to the avionics system
 - Transfer to internal power and de-energize interface connections

Derived Requirements from System Architecture

Payload	Imaging	Communications
Satellite Mass	10.6 kg	10.2 kg
Orbit	Elliptical phasing orbit - 567 X 3167 km	Elliptical phasing orbit - 625 x 918 km
Inclination	90° or 97° ± 0.1°	Latitude ± 0.1°

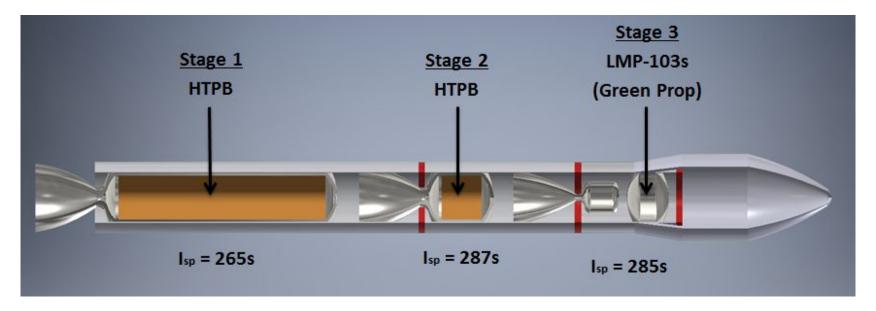
System Level Launch Vehicle Design Considerations

- ullet Similar payload masses reduce discrepancies between ΔV requirements of launch vehicle
- Design Goal: Ensure all requirements are satisfied by 1 launch vehicle design

Performance Trades

Trade	Status	Outcome
1st and 2nd Stage Propellants	Closed	HTPB 1st and 2nd Stage
3rd Stage: Solid or Liquid Propellants	Open	<u>Liquid Monoprop LMP-103</u>
Thrust Vector Control (TVC) Methods	Closed	Electric Gimbal

Liquid Propellent Study


Propellant Overview

3-Stage Rocket Model

Rocket Diameter: 1.1 m

• Fairing Diameter: 1.25 m

• Height: **13 m**

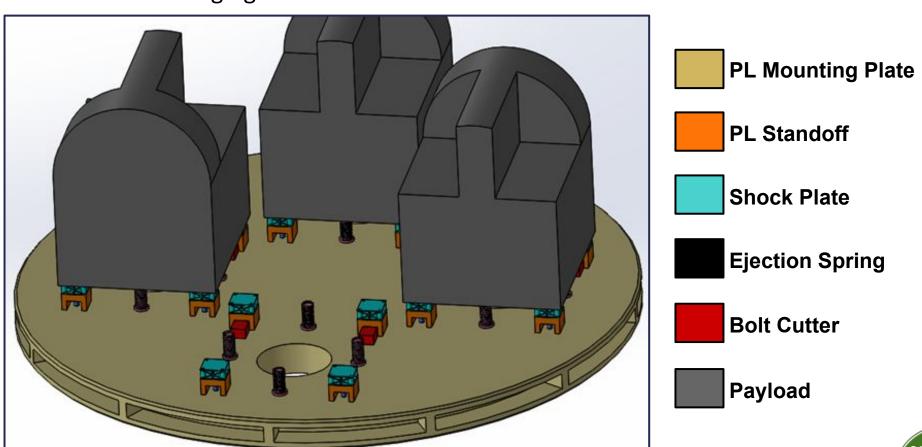
Mass Breakdown

Component	Mass (kg)
Max Payload	41.2
Fairing	15
Effective Mass	56.2
Stage 3 Wet Mass	260
Stage 2 Wet Mass	1100
Stage 1 Wet Mass	5800
Total LV Mass	7160

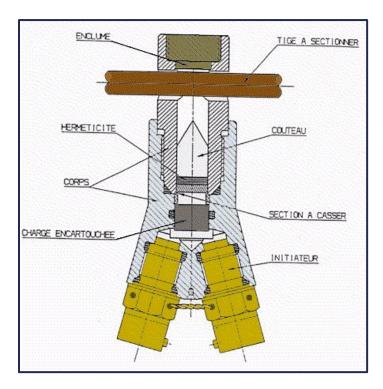
Payload Integration and Deployment

 Goal: Minimize residual ejection velocities and angular rates

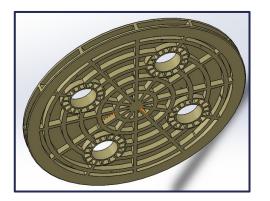
Trade	Status	Outcome
Satellite Mounting: Axial vs <u>Radial</u>	Closed	Axial
Payload Release: Pyros vs Actuators	Open	Separation Bolt
Payload Eject: Spring vs Thrusters	Closed	<u>Spring</u>

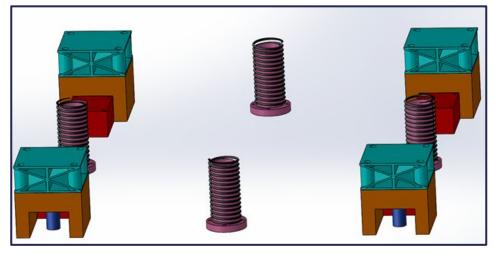

Payload Configuration

- Axial Configuration
 - Aligned with longitudinal forces
 - Structural mass is less than radial configuration
 - No central mounting structure
- Payload Deployment
 - Short time separation between each payload deployment
 - Desired ejection velocities: 30-50 cm/s
 - Mounting plate mass estimate: 15-20 kg


Payload Configuration

- Payload standoffs and shock plates are permanently fixed on satellites
 - Imaging satellite shown




Payload Configuration Components

Bolt Cutter

Payload Mounting Plate

Payload Standoffs and Ejection Springs

Telemetry and Tracking

- System uniformity dictates UHF frequency band
 - Patch antenna
- Typical launch failures occur between time of launch to first stage separation
 - Telemetry and tracking communication only applied from launch to first stage cut-off
 - Unreasonable to have downrange ground stations because of orbit variability

ADCS

- Gimbaled solid rocket booster
 - Yaw and pitch control
- Cold-gas thrusters
 - Roll control
- 1st and 2nd stage open loop control
 - Accelerometers and rate gyros
- 3rd stage closed loop control
 - GPS and INS

Moving Forward

- Application of Loading and Trajectory Program (ASTOS-AeroSpace Trajectory Optimization Software)
- Analysis on 3rd Stage Solid Possibility
- Vibration and Acoustic Analysis
- Thermal Analysis
- Power Budget and Battery Sizing
- Configuration of components
- Fairing design
- Testing and Integration Plan

System Conclusion

Presenter: lan

Hughes-Wickham

System Conclusion

- System wrap up
 - 40 Satellites
 - 24 imaging satellites
 - 16 communications satellites
 - 5 launch sites
 - 10 Launch Vehicles
 - Able to meet all imaging, communications, and timeline requirements
- Path Forward
 - Margin allocation consistency
 - Contingency plans
 - Cost modelling
 - Parametric cost estimation model
 - Standardizing hardware across vehicles
 - Thermal and Structural analysis

Questions/Discussion Session

Support Slides

Major Trades

LEO vs. MEO/GEO

Choice(s) Considered	Pros	Cons	Status
A. LEO	QuickSmall satellitesDe-orbits fast	High number of planes and satsQuick pass times	Accepted
B. MEO/GEO	 Reduced number of satellites Lengthy Pass Times 	 Expensive Large satellites Response time Excessive for 6 months 	Rejected

Circular vs. Elliptical Orbits

Choice(s) Considered	Pros	Cons	Status
A. Circular	No orbital maintenance	Quick passes over target	Accepted
B. Elliptical	Increased time over target	High altitude apogeeOrbit corrections necessary	Rejected

Variable vs. Invariable Orbits

Choice(s) Considered	Pros	Cons	Status
A. Variable	Reduces number of planes/ launches	 Causes delays 	Accepted
B. Invariable	Faster response timeOrbits pre-selected	Greatly increases number of planes/ sats	Rejected

Separate Communications/Imaging vs. Combined

Choice(s) Considered	Pros	Cons	Status	
A. Separate Comms/Imaging	 Less complex satellites Small components Different requirements 	More satellites/planes	Accepted	
B. Combined Functionality	 Reduced number of satellites 	Large, complex satellites	Rejected	

Separate Imaging vs. Combined Imaging Function

Choice(s) Considered	Pros	Cons	Status
A. Separate Imaging Functions	Decreased complexity per satellite	More satellites requiredIncreases cost	Rejected
B. Combined Imaging Functions	Fewer satellitesReduced cost/No. of launches	Complex thermal subsystemAdds size/ mass	Accepted

Correcting Orbits Vs. Non-Correcting Orbits - COMMS

Choice(s) Considered	Pros	Cons	Status
A. Correcting Orbits	Longer pass times towards EOL	Addition of on board propulsion	Rejected
B. Non-Correcting Orbits	No need for on board propulsion	Lower pass times towardsEOL	Accepted

Correcting Orbits Vs. Non-Correcting Orbits - IMAGING

Choice(s) Considered	Pros	Cons	Status
C. Correcting Orbits	Maintain daily ground track	More mass for propulsion system	Accepted
Non-Correcting Orbits for	No need for on board propulsion	Drag decrease altitudeJ2 affects ground track	Rejected

Vehicle Specifics

Comms Orbit Determination Code

- The 500x500 km and all COE combinations defined
- Pass = all target area in view (with elevation angle)
- Passes below 3 minutes removed, "chunk" defined

CHUNK

- Check if time between passes in chunk is <120 minutes
 - Satellites added (equal spacing in true anomaly), repeat
- 24 hours/chunk length for continuous daily coverage
 - Planes spaced out equally in RAAN
- Check if total pass time for all sats, all planes <240 minutes
 - Satellites added, repeat

Comms Satellite Altitude Trade

Alt.	800	775	750	725	700	675	650	625	600	575	550	525
Max # Planes	4	4	4	7	5	5	5	5	5	8	8	8
Max # Sats	10	11	12	16	14	14	15	15	16	22	23	25
Gain: (300 MHz)	5.3	5.1	4.8	4.6	4.3	4.1	3.8	3.5	3.2	2.9	2.6	2.2
Area-to- mass	0.43	0.33	0.25	0.18	0.13	0.1	0.07	0.05	0.04	0.03	0.02	0.01
Deorbiting dV (km/s)	0.217	0.204	0.191	0.178	0.164	0.151	0.138	0.124	0.111	0.097	0.084	0.070

Antenna Trade

Antenna	Beamwidth (deg)	Size	Deployment Necessity	Notes
Helix	120.5	3.98E-10 m^3 (Volume)	Yes	
MMA	150		No	Operates in 2-3 GHz.
Patch		10.2 cm	No	Operates in 2-3 GHz
Dipole	90	Small	Yes	
Monopole	90	.25 m (length)	Yes?	Up to 1.5 dB
Omni	360	Small	No	Avg. 0 dB can be -1 dB
Turnstile	180	~18 cm	Yes	Similar to Omni

Comms Mass-Power-Thermal

Subystem	Components	Model (hyperlink)	Details	Mass	Price	Size	Thermal Output	Power	Temp Range
)				(kg)	(\$)	(cm)	(W)	(W)	(K)
	ACS Thrusters		Hybrid ADN DeltaV 1mN Thruster	0.297					263 to 333
	Attitude Sensors		Star Tracker	0.35	75000	7.9 x 5.9 x 4.6	0.75	1	233 to 353
ADCS	Rate Gyroscope	Physical Component	(x1 - 3 axis)	0.055	800?	3.9 x 4.5 x 2.2		1.5	233 to 358
	Position Sensor		GPS Receiver	0.16	7000	4.6 x 7.1 x 1.1		<1	263 to 323
	Pos Sensor Antenna		GPS Antenna	0.082					
	Engine		5N HPGP Thruster	0.36		5x21.6	7.2	8	
	Phasing Propellant		90 m/s (3.81)	0.187					268 to 323
Propulsion	Deorbiting Propellant		68 m/s	0.138					268 to 323
Propulsion	Pre-Burn Orientation Propellant		very small>						268 to 323
	Tank and Valves		Not accurate>	0.5		2661.3cm^3			244 to 344
Structure	Frame/ Harnessing		(~20% of total mass)	1.6854					78 to 336
Thermal	Heater	There's a few, see notes		0.2			12	12	
Thermai	Cooling	Bellows, dim in notes		0.1		0	0	0	
Comms	Antenna		Patch w/ Quad Whips	0.1				50.3	
Commo	Transceiver (x18)			3.6		10 x 10 x 2	0.0277	0.277	218 to 398
TT&C	Astrodev Transciever	ĺ		0.052		6.5 x 3.3 x 1			253 to 343
CD&H	Computer	SpaceMicro CSP		0.446	7500	10 x 10 x 0.6		1	273 to 343
Power Units	Batteries	2 of these>	Gom Space: (Lithium-lon), 70 Whr, 14.8 V, 1P-4S	0.6	10000	10 x 10 x 6 cm	0.3		273 to 318
	Solar Panels		(Cells + Structure), 425 cm ² , w/ packing factor 500 cm ²	1.2	5000	Each (x5): 10 x 10 x 0.3	2.4		235 to 398
			Total W/O Frame (kg)	8.427					
	TOTALS		Total W/ Frame (kg)	10.1124	104500				
	RATING			Ok			Not Sure	Ok	
	Good			< 35				< 45	
	Ok			35-40				45-55	
	Bad			40 <				55<	

Return

Propulsion Method Decision

Possible Engines

1												Scenario 1 (I	Phase, Station Keepin	ng, & Deorbit)	Scenario 2 (Station	Keeping & Deorbit)
Type of thruster	Make / Model	Propellant Type	Engine Mass (kg)	Thrust (N)	Exhaust Velocity (m/s)	ISP (s)	Power Required (W)	Weight Flow Rate (wdot = N/s)	Mass Flow Rate (kg/s)	Assumed Spacecraft Dry Mass w/o sail (kg)	Assumed Spacecraft Dry Mass with sail (kg)	Total Prop Mass	Burn Time: Phase (sec)	Burn Time: De-Orbit (sec)	Total Prop Mass (kg)	Burn Time (sec)
Green Monoprop Thruster	HPGP	LMP-103S(Green)	0.38	0.69	2158.2	220	8	0.004	0.0003197	20.68	20.68	0.9106103627	2306.575042	541.7526487	0.7312873916	2287.417553
Electrospray	BET-100	Ionic Liquid	1.15	0.001	7848	800	15	1.25E-06	1.28E-06	21.45	21.45	0.2556978167	161284.4586	38479.46072	0.2059711539	160914.964
PPT	BmP-220	Teflon(PTFE Solid)	0.5	0.00002	5253	536	7.5	0.000765	0.0009323	20.8	20.8	0.3715257897	8111621.046	1929616.514	0.2991033093	8083873.225
Green Monoprop Thruster	BGT-X5	AF-M315E(Green)	1.5	0.5	2185	223	20	0.000224	0.000228	21.8	21.8	0.947901488	3366.542236	790.9204312	0.7612743592	3338.922628
Green Monoprop Thruster	MPS-130	AF-M315E(Green)	2.2	6	2354.4	240	7	0.00625	0.000637	9.14		3.94	5416.7	144.5	0.48	144.5
Green Monoprop Thruster	HPGP	LMP-103S(Green)	0.75	22	2501.55	255	TBD	0.0087945	0.008794	9.14		3.5	348.3	9.38	0.433	9.38
Green Monoprop Thruster	BGT-5	AF-M315E(Green)	3.5	5	2254	230	50	0.00221	0.002218	23.8	23.8	1.002527491	365.9623334	86.03383015	0.8052481574	363.0514686

Communications Constellation

Components

- Comms Payload: 18 solid state UHF radios
- Antennas: 4 whips in phase quadrature
- Propulsion:
 - Phasing: SSC 5N Thruster
 - ADCS: MOOG SVT01 10 50mN
- Determination Sensor: TBD
- Normal Op: Magnetorquers
- CD&H: Cubesat Space Processor
- Solar Arrays: Body-mounted GaAr cells
- Batteries: Li-ion
- TT&C: UHF Transceiver
- GPS: TBD
- PDU: TBD

Imaging Sat Capability Trade

Metrics Considered:

- Data Generation
- Sensor Size
- Payload Size
- No. of Satellites
- Complexity
- Data Downlink
- Power Cost

- Pass Utilization
- Mass
- Size
- Power Requirement
- Control Capacity
- Phasing Time
- Phasing DeltaV

Imaging Mass-Power-Thermal

Subystem	Components	Model (hyperlink)	Details	Mass	Price	Size	Thermal Output	Power	Temp Range
				(kg)	(\$)	(cm)	(W)	(W)	(K)
	Star Tracker	Standard NST	(Star Tracker)	0.35	75,000	10 x 5.5 x 5	0.75	1.5	233 to 353
			x3 (2 axes	to at more	50,56.00	100000000000000000000000000000000000000			980000000000
	Sun Sensor	SSOC-A60	determination)	0.025	7,200	3 x 3 x 1.2		< 0.036	233 to 358
ONO	Rate Gyro/Accelerometer	OEM-STIM-300	(x1 - 3 axis)	0.055	8,600	3.9 x 4.5 x 2.2		1.5	233 to 348
GNC	Magnetometer	HMC2003	x1 - 3 axis	0.1	-,	2.73 x 1.2 x 1.97		20 mA	
	Position Sensor	OEM-615	(GPS)	0.16		4.6 x 7.1 x 1.1		<1	233 to 358
	Position Sensor Antenna	ANT-GPS	(GPS Antenna)	0.082					
	RCS Thruster	Hybrid ADN Delta-V / RCS System	Total Fuel Mass	0.1347		1			
	CONTRACTOR OF THE PARTY OF THE	A	Manager during to	0.00000000	CONTRACTOR OF THE PARTY OF THE	17cm (Long, Valves can	200.5		
	Engine	SEE BELOW	5 N HPGP	0.36	25,000	be modified)	7.2	8	100000000000000000000000000000000000000
	Phasing Propellant	LMP-103s	575 m/s	1.68	2,016				268 to 323
Propulsion	Deorbiting Propellant	LMP-103s	18 m/s	0.0451	54.12				268 to 323
	Orbital Maintance Propellant	LMP-103s	75 m/s	0.192	230.4				268 to 323
	Tank and Valves		Etc.	TBD		2661.3cm^3			244 to 344
Structure	Frame/ Harnessing		(~20% of total mass)	1.44854		28x27x42			78 to 336
	Heater	There's a few, see notes	0.02	0			12	12	
Thermal	Cooling	Bellows, dim in notes		0.1		0	0	0	
aning Dayland	Optics			3		25(diam), 35(length)	0	0	263 to 323
aging Payload	Focal Plane Assembly	l l	Sensor	0		24.23 x 5	66	132	263 to 323
						Horn, 4.3x5.2x11.2 cm,			
Comms	Antenna	http://www.ainfoinc.com/en/pro_pdf/ne		0.15		Phase-Quad UHF, ~20.5x20.5x0.5 cm	0	0	233 to 353
	Amplifier	http://www.rflambda.com/pdf/lownoise		0.03		1.5x3.5x2 cm	30	50	233 to 358
*****	Radio	http://www.astrodev.com/public_html/e		0.05		6.2x3.3x1.1 cm	0.25	0.25	238 to 358
TT&C									
	Computer	http://www.spacemicro.com/assets/da		0.446		9.0x9.6x11.8 (PC-104)	0.15	1.5	218 to 398
Power Units	Batteries x 2	https://gomspace.com/Shop/subsyste	(Lithium-lon)	0.4		8.93 x 9.29 x 2.56 cm	0.3		233 to 358
Tower Onits	Solar Panels x3		(Cells + Structure)	1.8		27 cm x 27 cm on three faces	2.4	e.	173 to 398
	TOTALS		Dry Mass:	8.69124			AVG. THERMAL	AVG. POWER:	
	TOTALS		W/ Phase Wet Mass:	10.60834			8.03385	6.3925	<<< See Day in the
			W/O Phase Wet Mass:	8.92834					https://docs.google
	RATING			Ok			Not Sure	Ok	
				UK			Not sure	OK	
	Good			< 35				< 45	
	Ok			35-40				45-55	
	Bad			40 <				55<	

Sensor Type Trade

		VIS	NIR			TI	IR	
Metrics	Weight	Pushbroom	Pushwhisk	Matrix Starer	Weight	Pushbroom	Pushwhisk	Matrix Starer
Dwell Time	0.4	7	6	8	0.5	7	6	10
Mechanical Complexity	0.6	7	5	4	0.7	6	4	3
Pointing Requirements	0.3	7	8	5	0.5	6	9	8
Optical Complexity	0.5	5	6	5	0.4	4	6	4
Cost	0.4	3	4	3	0.4	4	5	3
Smear	0.3	5	4	3	0.6	4	3	5
Reliability	0.7	8	6	6	0.5	8	6	5
Power	0.3	9	8	7	0.3	8	7	6
Useful Data (%)	0.7	7	7	9	0.4	8	8	10
Operational Delay	0.4	8	6	8	0.4	5	4	6
Total		30.7	27.5	27.5		27.9	26.4	27.6

Planes of Auxiliary Images

Metrics Considered:

- Ground track differences
- Image quality
- Redundancy
- Launch vehicle requirements

ACS Trade

Metrics Considered: Fully Actuated Control System

	Vacco Thrusters (12)	Reaction Wheels (4) and Magnetorquer (1)
Power, Watts	15 (pulse, TBR)	1.5 (max)
Mass, Kg	0.29 (fuel mass)	0.35 (1.4 total)
Jitter	No	Yes

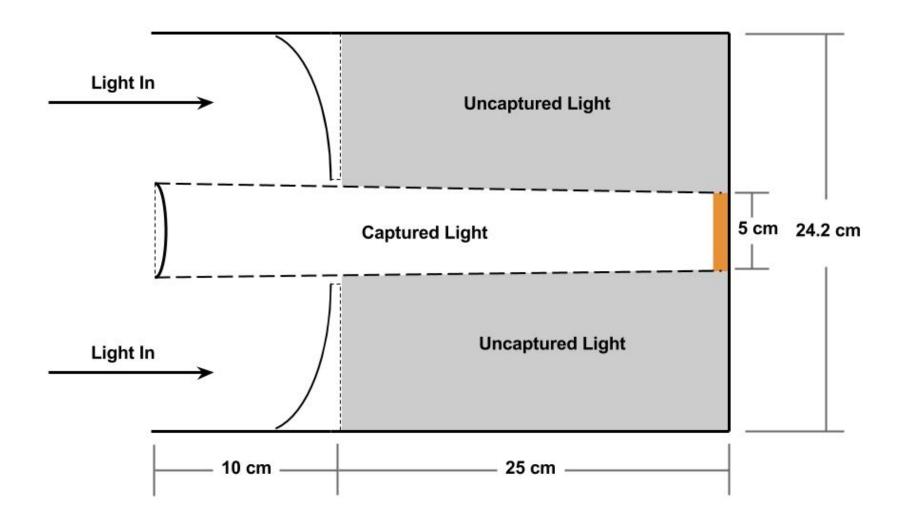
Reaction Wheels for Imaging

- Aligned 57 degrees off the xy plane of the spacecraft body frame
- Momentum budget: 0.1 Nms
- Dimensions

Radius: 3.5 cm

Thickness: 2.5 cm

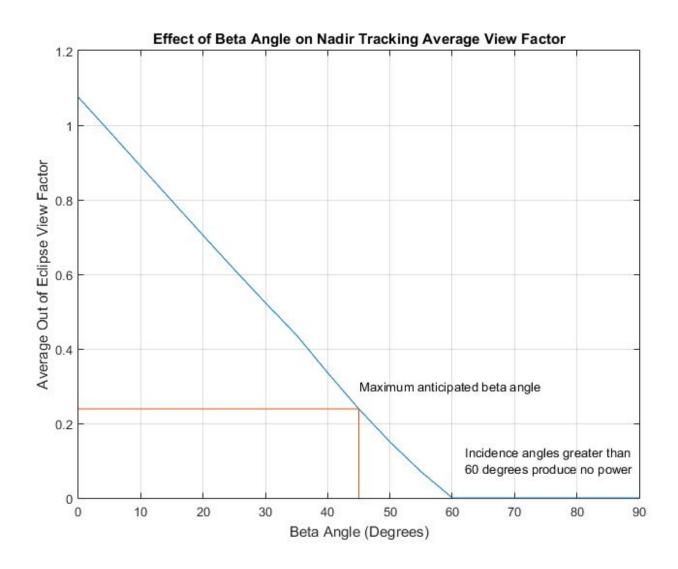
– Mass: 0.35kg


Max Angular Momentum: 0.1 Nms

Duty cycle

Maneuver Type	Detumble	Image	Downlink	Stationkeep	Account for disturbances
Accumulated Momentum (Nms)	0.038	0.002	0.012	0.002	0.015/day

Optics Light Capture - Secondary View


Power Subsystem

Baseline Assumptions for Battery/Solar Panel Sizing

	Assumption	Rationality
Solar Cell BOL Absorptivity	0.25	Reasonable (eg. GaAr TJ)
Solar Cell Degradation	2.75 %/yr	Reasonable (eg. GaAr in LEO)
Packing Density	0.78	Conservative
Battery Charge/Discharge & PDU Efficiencies	90%/80%	Reasonable
Battery Energy Density	100 Whr/Kg	Reasonable (eg. Li-Ion)
Battery Max. Depth of Discharge	100%	Reasonable (~180 cycles)

Operation Temperatures

Imaging Satellite

Component	Temperature Range (°C)
Attitude Sensor	-40 to 80
Rate Gyroscope	-40 to 75
Position Sensor	-40 to 85
Phasing Propellant	-5 to 50
ADC Propellant	0 to 50
Tank/Valves for Propellant	-29 to 71
Structure Frame	-195 to 93
Optics	0 to 65
Comms Equipment	-40 to 80
CD&H Amplifiers	-40 to 80
CD&H Computer	-55 to 125
Batteries	-40 to 85
Solar Panels	-100 to 125

Ground Station Type

Metric	MOBILE	FIXED	WEIGHT	Mobile Total	Fixed total	JUSTIFICATION
Before Delivery:						
Minimize staffing	7	4	0.3	2.1	1.2	lower cost
Storage:						
Ease of storability	8	5	0.3	2.4	1.5	less space
Minimizes maintenance	6	4	0.6	3.6	2.4	building needs more maintenance than truck/suitcase
Disaster Occurs - 24 hours:						
Eases transportation	3	10	0.6	1.8	6	fixed does not need transportation
Minimizes transportation time	3	10	0.8	2.4	8	
Minimizes setup/deployment deployment time	8	9	0.8	6.4	7.2	
Capable of sending signal	5	5	1	5	5	
Minimize preparation time	8	9	0.8	6.4	7.2	
Mission - 6 months:						
Minimizes maintenance	8	7	0.7	5.6	4.9	
Minimizes staff	5	8	0.5	2.5	2.5	
Minimizes time to sending signal to sats	8	4	0.8	6.4	3.2	ability to send 15% cmd
Capable of sending signal	0	0	1	0	0	
End of Mission:						
Ease of disposability	0	0	0.2	0	0	
Totals				44.6	49.1	

LV Baseline

What our **Closed** Trades Determined

- Build our own launch vehicles
- Build our own launch sites
- Land launch

What our **Open** Trades Determined... So far

- Separate launch vehicle configurations for imaging and comms satellites
- HTPB as solid fuel option
- MMH/N2O4 as liquid fuel option

Launch Vehicle: Build vs. Buy

Decision: Build

- LV purchase is unprecedented
- Buying ICBMs is difficult
- Will need a large number and most LV manufacturers don't have the capability to build that many
- Difficult to buy a launch vehicle and use your own operations system
 - Almost all companies that manufacture LVs require you to use their operating systems
- Building our own LV allows for customization

Launch Site: Build vs. Use Pre-existing

Decision: Build

- Can't use any government or military infrastructure
 - Eliminates a good number of pre-existing launch sites
- 24 hour requirement means optimal launch locations are limited
 - Only 9 areas that meet our criteria

Air vs. Land vs. Sea Trade

Metric	Air*	Land	Sea	Weight
Development Cost	5	8	4	0.6
Maintenance Cost	6	8	3	0.6
Launch Timeliness	5	7	3	1
Regulations	4	6	8	0.4
Complexity	4	9	5	0.8
# launches from each site	3	8	7	0.4
Payload Size	5	9	8	0.7
People Risk	6	8	9	0.3
Launch Location	8	5	8	0.5
Total	26.9	40.6	29.5	

^{*}Not possible if high altitude is required

Solid Propellant Trade

Fuel:	Isp (sec)	Density (kg/m³)	Storability:	Cost/Availability:	Toxicity Level:	Value:
Weights:	0.7	0.7	1	0.7	0.8	value.
НТРВ	260	1854.553615	Good 5+ years	~16 \$ / kg	Moderate	18.2
IIIFB	4	5	6	5	3	10.2
DB	220	1605.434473	NG leaks	Moderate	Bad	10.6
DB	3	3	2	4	2	10.6
PBAN	260	1771.513901	Good 10+ years	~6 \$ / kg	Moderate	18.2
PDAIN	4	4	6	6	3	10.2
СТРВ	260	1771.513901	Good 10+ years	~70 \$ / kg	Moderate	16.8
CIFB	4	4	6	4	3	10.0

- HTPB was selected for baseline tests due to its performance parameters
- PBAN propellant is the most affordable.
- HTPB has slightly better performance metrics for slightly more cost.

Liquid Propellant Trade

Fuel/Ox:	Isp (sec)	Density (kg/m³)	Storability:	Cost/Availability:	Toxicity Level:	Value:	
Weights:	0.7	0.7	1	0.8	0.8	value.	
MMH/N2O4	280	1.80556	Good storage properties	Very expensive	Bad	15.1	
	5	6	5	2	1		
UDMH/N2O4	277	1.140794224	Most stable Hydrazine	Very expensive	Moderate	16.3	
	5	4	6	2	3	10.0	
Hydrazine/H2O2	269	1.219330855	Worse temperature range	Not used on many engines	Bad	12.7	
	4	5	4	1	2		
Hydrazine/N2O4	286	1.195804196	Worse temperature range	Very expensive	Bad	14.1	
,	6	5	4	2	1		

- MMH/N2O4 has the best performance metrics but is the most toxic
- UDMH/N2O4 is the least toxic of the hydrazine family but has lower performance metrics

Solid Versus Liquid Trade

Type of Fuel:	Performance	Complexity of Flight	Assembly	Cost	De-Orbit	Complexity of Design	Storage	Value:
Weight:	0.2	0.3	0	0.05	0.2	0.2	0.05	
Solid (HTPB)	Higher Isp/thrust	maneuvers to spend fuel	Simple design	Much cheaper	retro solids added on	Simple design	Good storage	4.2
	6	3	6	5	2	6	5	
Liquid (LMP-103S)	Monoprop	Standard flight trajectory	more complex	More expensive	Restart capabilities	More complex	Slightly more restricted	4.55
	3	6	3	2	6	3	5	

- Solid propellant has better performance by thrust and Isp metrics
- Liquid propellant has benefit of easier variability of orbits for launch
- Decided to baseline LMP-103S liquid monopropellant due to the known method of orbital variance, while the solid propellant method is currently unknown

Liquid Propellant Study

Fuel	Туре	Isp (s)	Density (kg/m3)	Mission Cost (millions of \$)	Toxicity
LMP-103s	monoprop	~285	1.227e3	~5.88	Not toxic
Hydrazine	monoprop	~260	1.021e3	~6.04	High
UDMH/NTO	biprop	~333	1.140e3	~4.32	High

Mission cost calculated for third stage of launch vehicle

Liquid Monopropellant Trade

Fuel	Туре	Isp (s)	Density (kg/m3)	Mission Cost (\$)	Toxicity
LMP-103s	Monoprop	~285	1.227e3	~192,000	Not toxic
Hydrazine	Monoprop	~260	1.021e3	~201,000	High

- Mission Cost calculated for mass of satellite prop
- Benefits
 - 30% Higher Performance than hydrazine
 - Shipment and handling of fuel(No SCAPE suits required)
 - Reduced risks for other satellites and launch site
 - Cost \$1200/kg

Launch Subsystems

Thrust Vector System Trade

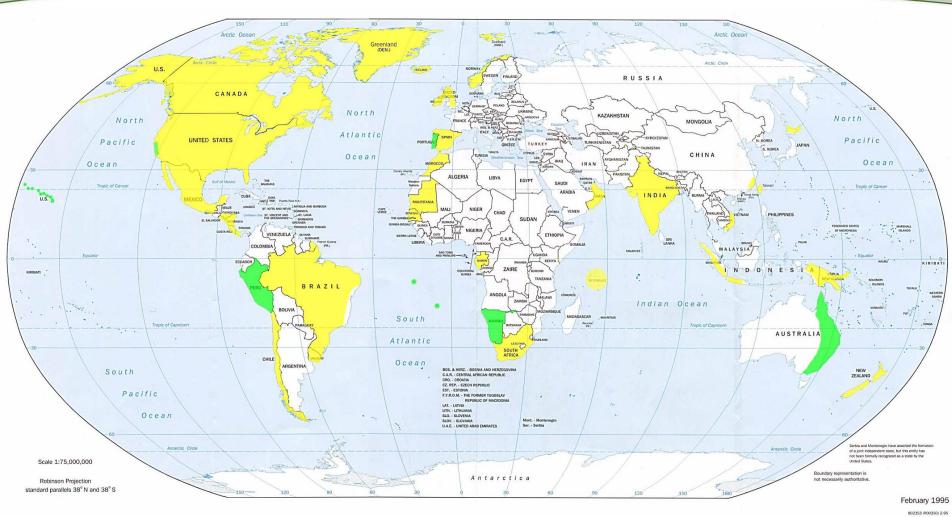
	Cost	Complexity	Performance	
Weighting	0.5	0.6	1	TOTAL
Jet Vane	0.5	0.6	0	1.1
LITVC	0.25	0	0.5	0.75
Gimbal	0	0.25	1	1.25
Auxiliary	0	0	1	1

Launch Subsystems

Launch Ground System Trade

	Above Ground	Below Ground
Launch Time		
Construction Cost		
Construction Difficulty		
Vehicle Installation Difficulty		
Required Infrastructure		
Durability		

- Below ground construction is more involved and complex. All infrastructure must be more compact.
- Large vehicle is required to install vehicle on either configuration. Below ground may have to be installed in stages or from horizontal position.
- The above ground mechanism requires an alternative protective structure, while the below ground mechanism has to consider how to expel all of the exhaust gases and absorb vibrations.
- Protected from weather by the surrounding ground, unlike an above ground mechanism that is exposed and has to be protected from loading.
- The launch mechanism does not need to be defensible or stealth which are the main characteristics of below ground launch mechanisms.

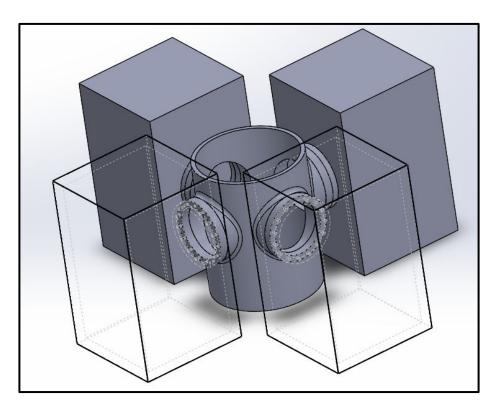

Launch Derived Requirements

	Communications	Imaging - Visual/NIR	Imaging - Thermal
Satellite Mass (kg)	13	75 or 215	75
Injection Orbit	625 km Elliptical	567 km Sun-Synch Circular	
Satellites per Plane	3	20 or 10	4
Number of Planes	2-5	4	1

All Possible Launch Locations

Back - Pre Launch

Launch


Payload

- Satellites want to minimize ejection velocities
 - Rotational, positional, tumbling
- Direction of deployment consideration
 - Affects sat configuration on LV
 - Small ejection velocities make direction negligible
- Pyros vs actuators for release mechanism
 - Actuators produce no shock but require more power
 - Pyros allow for a simpler separation system
- Spring system vs thrusters for ejection
 - Propellant plume can damage other satellites
 - Springs can be designed and sized to eject satellites at specific velocities

Radial Payload Configuration

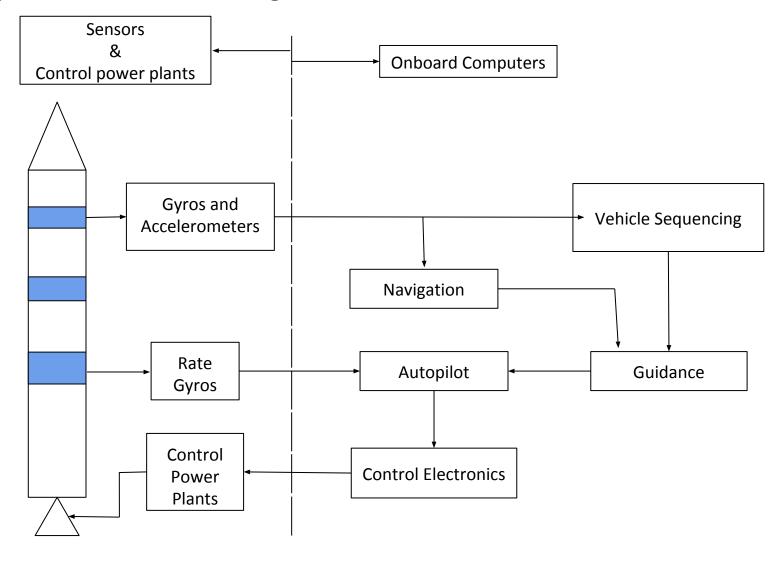
- Ability to deploy (2) sats quickly
- High stress areas near rings
- Additional structural mass added for cylindrical mounting component

Launch Configuration

ΔV Breakdown (km/s)

	Delta-V (km/s)
Stage 3	4.26
Stage 2	3.61
Stage 1	3.61
Totals	10.97

Mass Breakdown


ACS Thruster

Performance Characteristics		
Operating Media	GN ₂ , Xenon, CF ₄	
Operational Temperature	-35°C to +95°C	
Operating Pressure	1.5 to 2.5 bar	
Coil Resistance	To suit Customer Power Requirements	
Opening/Closing Response	<5 msec	
External Leakage	1 x 10 ⁻⁶ scc/GHe	
Internal Leakage	1 x 10 ⁻⁴ scc/ GHe	
Operating Voltage	24-32 Vpc	
Cycle Life	1,500,000	
Impulse Bit Repeatability	<5%	
Vacuum Thrust	10mN (± 5%) to 50mN (± 5%)	
ISP (Ambient Temperature	GN ₂ - 72s (Nom); CF4 - 47s (Nom)	
Thrust Vector Accuracy	<10	
Mass	<60g depending on interfaces	
Integral Filter	12 - 35 micron (abs) - per Customer Requirement	

Conceptual Control Design

