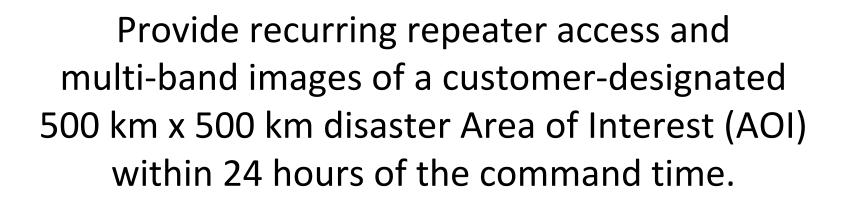


SAN LUIS OBISPO

Mission Concept: Emergency Relief Constellation

Presentation Outline


- Mission Objective/Requirements
- Mission-Level Trades
- System Architecture
- Concept of Operations
- Imaging Constellation
- Communications Constellation
- Launch Vehicle

Mission Objective/Requirements

Presenter: Adrian Williams

Schedule

- The system shall reach 25% capability within 12 hours
- The system shall have full capability within 24 hours
- The system shall have 95% capability after 6 months at End-of-Life
- The system cannot be deployed in orbit prior to time of command
- The constellation must deorbit of within 5 years of mission completion

Imaging

- Imaging payload shall provide visible (Vis) and near infrared (NIR) images of AOI with a 5 meter per pixel resolution
- 1 daylight image of entire AOI each day
- 3 daylight images of 15% of AOI (determined by customer) at different times each day
 - Above 50 degrees latitude, 15% images not required
- Necessity for thermal infrared (TIR) imaging will be decided by customer on day of launch
 - If TIR imaging is deemed necessary, TIR images of 25% of AOI (determined by customer) shall be taken each day
 - TIR images of AOI require less than 100 meter per pixel resolution
- Images must be provided to customer as quickly as possible

CAL PO

Communications

- The system shall provide beyond line-of-sight communications capability to first responders
- The system shall support entire AOI
- The system shall be compatible with existing UHF communications systems
- The system shall provide repeater capability for 240 minutes/day
- The maximum time without repeater access is 120 minutes
- The minimum communications window is 3 minutes

Launch/Ground

- The systems shall operate in politically stable locations
- The systems shall comply with applicable U.S. and international regulations
- The systems must store for at least 5 years prior to launch
- The system cannot utilize existing government or military infrastructure

Mission-Level Trades

Presenter: Adrian Williams

- Orbital Altitude
- Satellite Capability Allocation
- Orbit Variability on Day of Launch
- Satellite Distribution Scheme
- Launch Vehicle Type
- Imaging Spectral Band Allocation

Orbital Altitude

Major Considerations	Result
 Time to orbit Radiation concerns Resolution requirements Deorbit in less than 5 years 	LEO

Satellite Capability Allocation

Major Considerations	Result
 Coverage and pass time requirements Satellite complexity Different optimal orbital schemes 	Separate Communications and Imaging Satellites

Orbital Variability on Day of Launch

Major Considerations	Result
 Number of satellites Number of orbital planes Launch site location Excess coverage 	Variable

Imaging Satellite Distribution Scheme

Major Considerations	Result
 Time allocated for distribution ΔV required to complete distribution burns Maneuvering capability allocation 	LV will complete RAAN spacing and true anomaly correction

Communications Satellite Distribution Scheme

Major Considerations	Result
 Mass of the vehicles ΔV required to complete distribution burns Complexity of the maneuvers 	LV will place communications satellites in phasing orbits; satellites will complete the final phasing maneuver

Mission-Level Considerations

Design Consideration	Result
Time to launchStorability	
 Number of satellites per launch vehicle 	Small Rapid-Response LV
 Reliability 	
 Orbit configuration 	

CAL POLY

SAN

Imaging Spectral Band Allocation

Design Consideration	Result	
 Necessity for thermal imaging will be decided day of launch 		
Required support systems	Vis/NIR separate from TIR	
 Number of launches 		
Coverage requirements		

System Architecture

Presenter: Carmelle Koren

Imaging Architecture

Target Area: San Luis Obispo on July 18th, 2017 at 10am

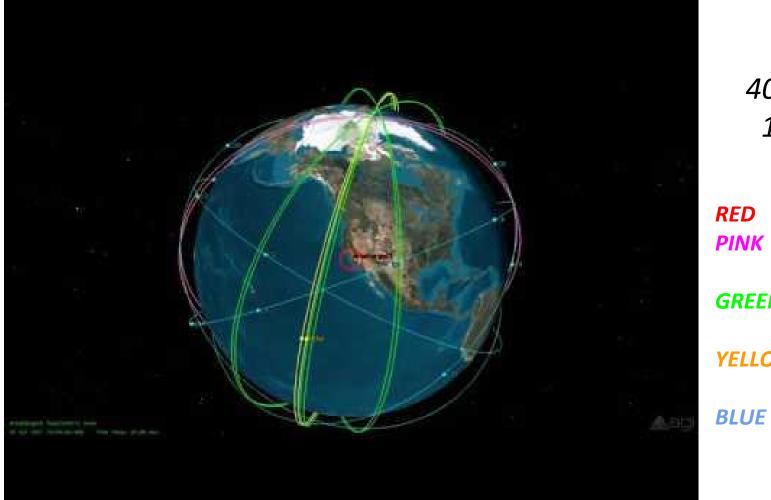
RED = Target Area PINK = Full Image Vis/NIR GREEN = 15% Vis/NIR YELLOW = 25% Image TIR

- 10 planes, 24 satellites
 - 8 sats/full image, Vis/NIR
 - 4 sats/15% image, Vis/NIR
 - 4 sats/25% image TIR

- Circular, **sun-synch 567 km** altitude, **latitude-dependent RAAN spacings**
- Satellite groups dispersed in RAAN
 - Images taken at different times of the day

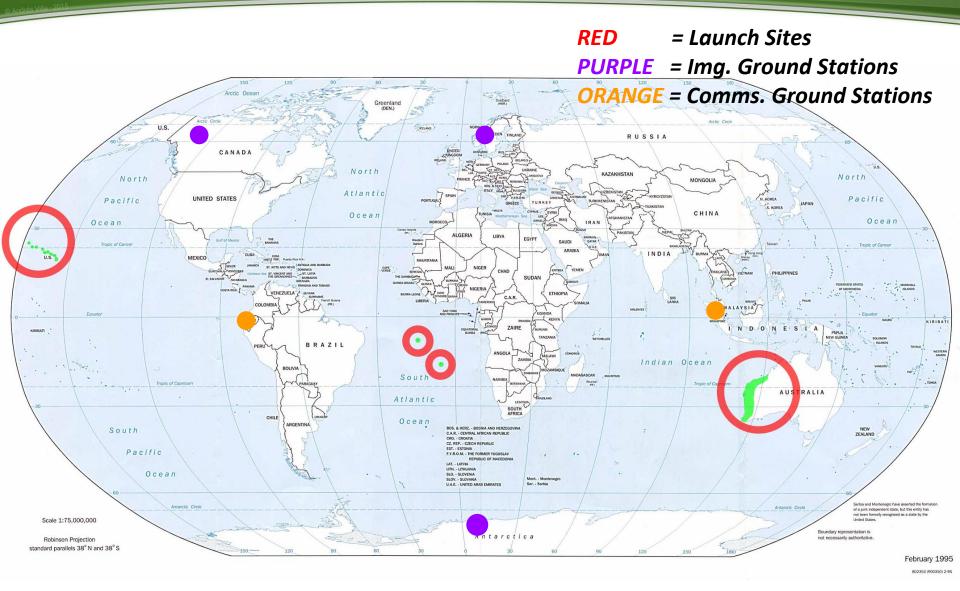
Communications Architecture

Target Area: San Luis Obispo on July 18th, 2017 at 10am


RED = Target Area BLUE = Satellite Ground Tracks

- 4 planes, 16 satellites
 - **4** sats/plane (total)
 - **3** sats/plane (necessary)
 - 1 sat/plane (redundant)
- Circular 625 km altitude, latitude-inclination matching
- Planes equally spaced in RAAN
- Satellites spaced 40 degrees apart in true anomaly

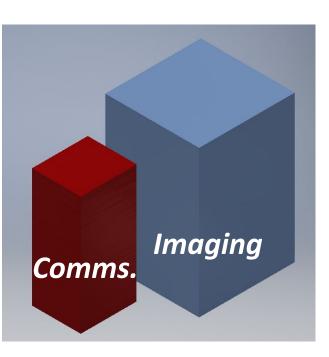
System Visualization


Target Area: San Luis Obispo on July 18th, 2017 at 10am

TOTALS 40 satellites 10 planes

RED = Target Area PINK = Full Image Vis/NIR GREEN = 15% Vis/NIR YELLOW = 25% Image TIR BLUE = Comms. Ground Tracks

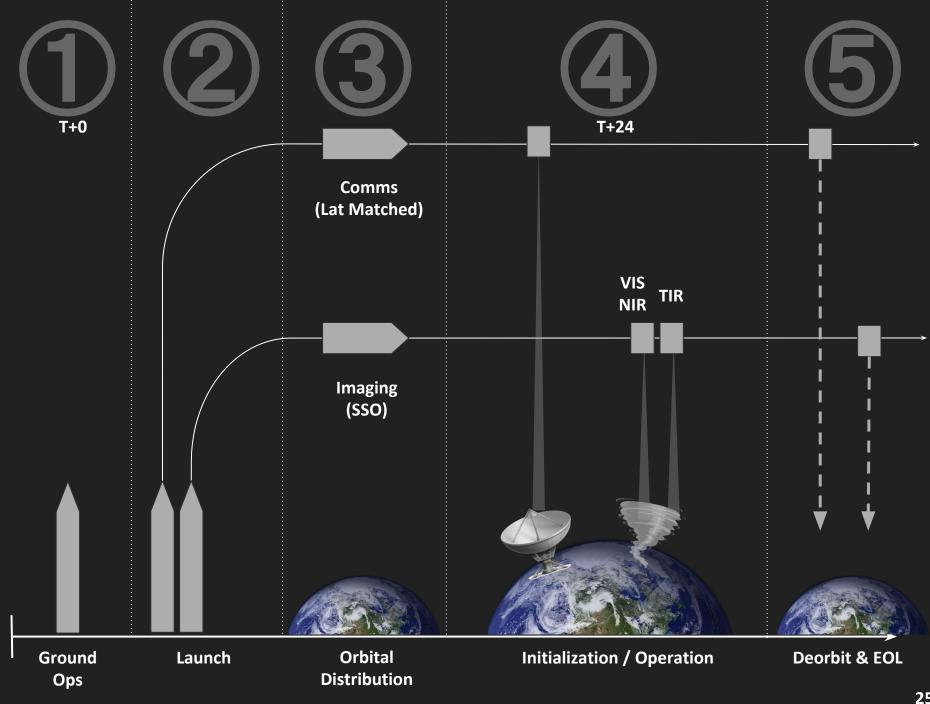
Ground Operations Locations


CAL POLY

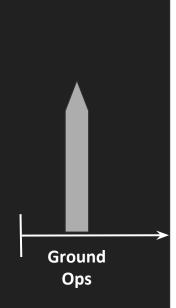
System Summary

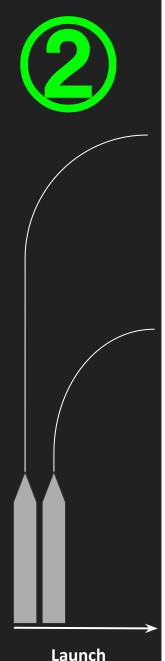
Totals

- 40 satellites
 - 24 imaging satellites in 10 planes
 - 16 communications satellites in 4 planes
- 4 launch sites, 10 launches
- 5 ground stations


	Imaging Satellites	Communication Satellites
Mass (kg)	9.5	7.5
Dimensions (cm)	28x27x42	16x14x34
Volume (m ³)	0.032	0.0076

Concept of Operations


Presenter: Carmelle Koren



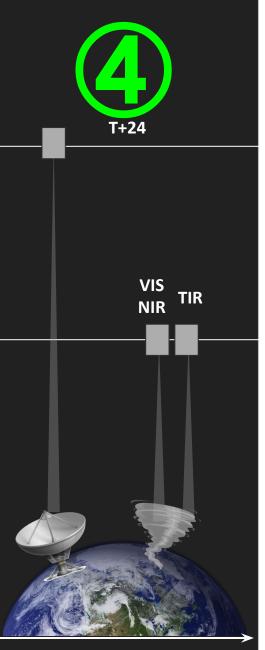
Ground Operations

- 5 years minimum storage
- Program trajectories
- Launch vehicle integration assumptions
 - Fully integrated satellites and propellant

Launch

- Launch considerations
 - Parameters affected by AOI latitude
 - Launch order and windows
- Elliptical transfer orbit insertion
 - For phasing

Comms (Lat Matched)

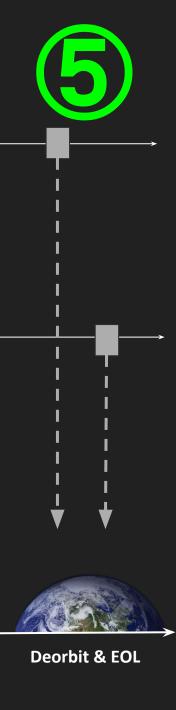

> Imaging (SSO)

Orbital Distribution

Orbital Distribution

- Imaging
 - Burn once to phase
 - Burn once to change RAAN for 15% and
 25% images
- Communications
 - Burn every 3 orbits to circularize

Initialization / Operation


Initialization/Operation

- Satellites conduct daily operations to fulfill requirements
 - Communications provide repeater

access

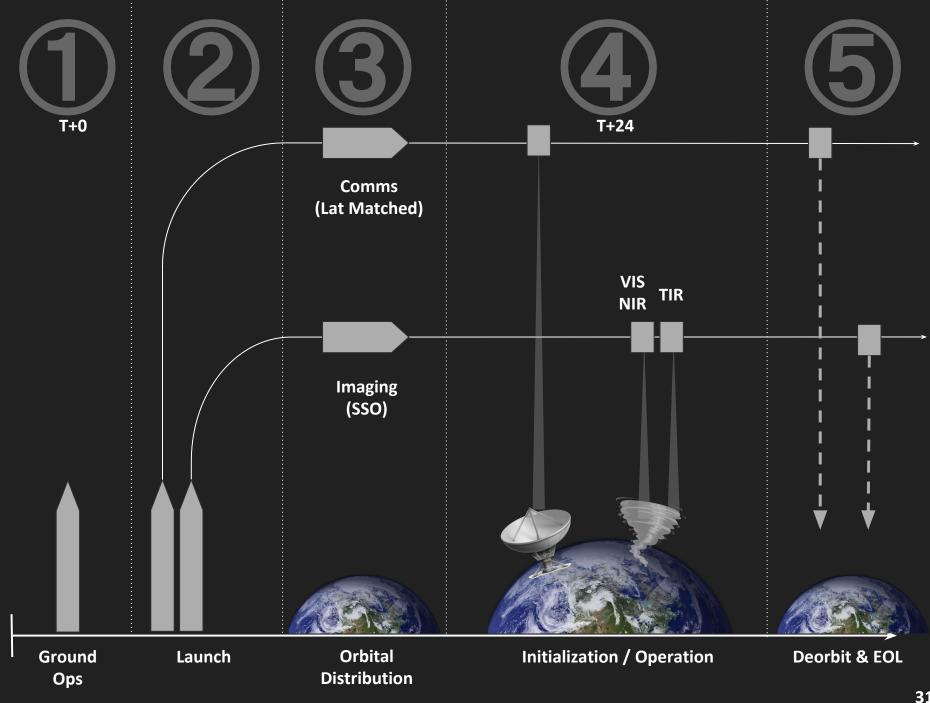
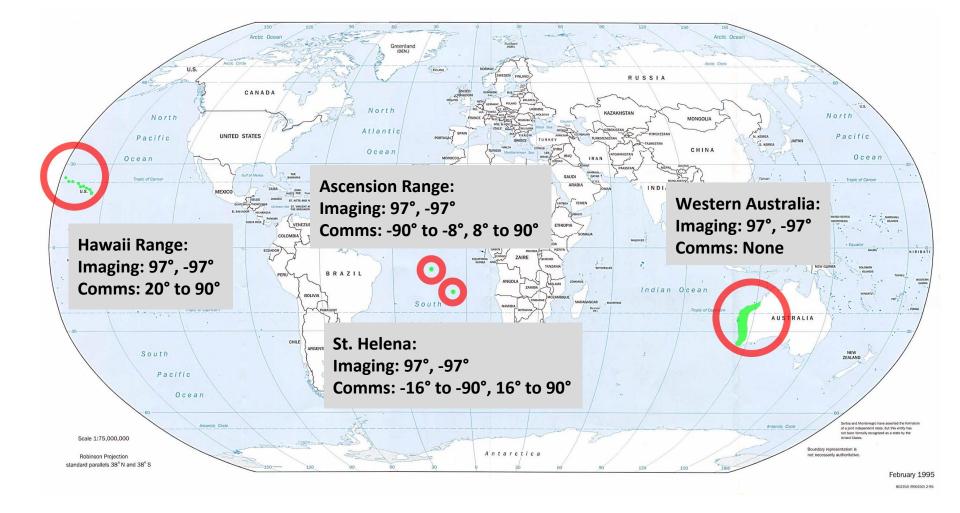
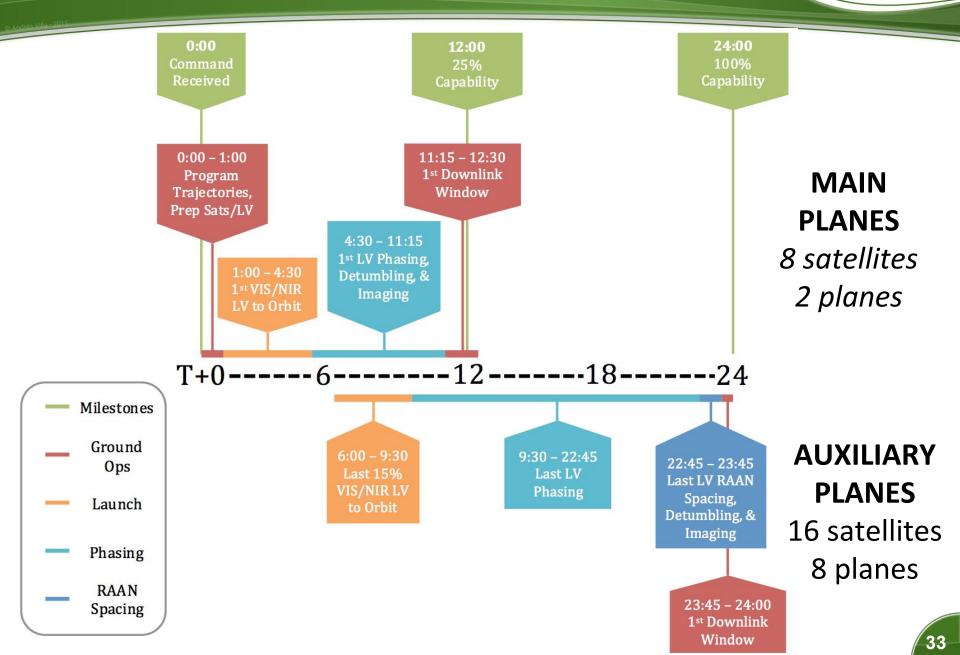

Imaging receive commands and

image designated areas



Deorbit & End of Life

- Satellites burn to drop altitude to deorbit within the 5 year requirement
 - $\circ~$ Imaging sats drop to 500 km
 - Communications drop to 450 km



Launch Locations and Capabilities

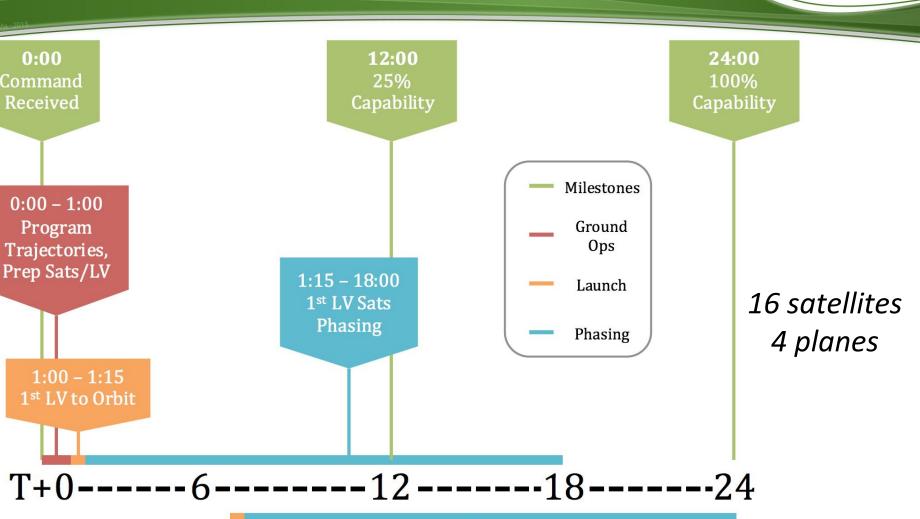
CAL POLY

Imaging 24-Hour Timeline

CAL POLY

Communications 24-Hour Timeline

0:00


Command

Received

0:00 - 1:00

Program

T+0-

7:00 - 7:15 Last LV to Orbit

7:15 - 24:00 Last LV Sats Phasing

CAL POLY

Imaging Constellation

Presenters: Andrew Meyer Derek DeNardo

Driving Requirements

- Must image Visible (Vis), Near IR (NIR), and Thermal IR bands (TIR)
- Resolution
 - Vis/NIR 5 m per pixel
 - TIR 100 m per pixel
- Area of Interest (AOI)
 - Vis/NIR
 - 1 daylight image of entire AOI each day
 - 3 daylight images of 15% squares of AOI
 - Determined daily by customer
 - Not required above 50 degrees latitude
 - TIR (if deemed necessary by customer)
 - up to 25% of AOI composed of a minimum of 5% squares
 - Determined daily by customer

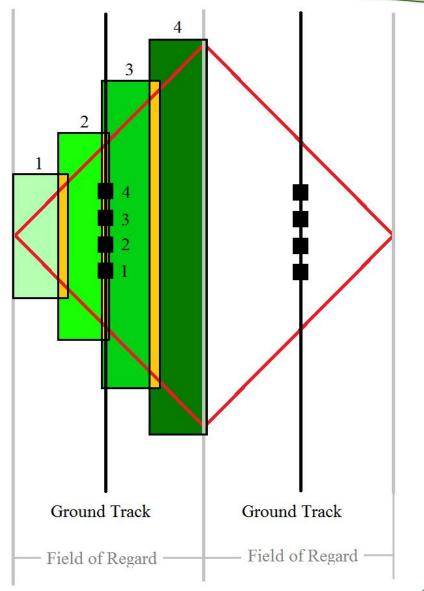
Major Trades

Trade	Status	Baseline
Orbits	Closed	Sun-sync repeat ground track, correcting perturbation
Sensor Type	Closed	<u>Pushbroom Scanner</u>
Satellite Capability	Closed	<u>Vis/NIR: 94 km swath</u> <u>TIR: 190 km swath</u>
Planes for Auxiliary Images	Closed	<u>2 Planes</u>
Downlink Antenna	Closed	Ku band horn
ACS	Closed	Reaction Wheels

Orbits Overview

- Full Image Groups (Vis/NIR)
 - 2 planes with 4 sats per plane
 - True Anomaly spaced (max 6.5 km separation between first and last satellite in the sky)
 - Other orbital parameters determined by target area
- 15% Groups (Vis/NIR) and 25% Group (TIR)
 - 2 planes with 2 sats per plane
 - True Anomaly spaced sats (max 6.5 km separation)
 - Other orbital parameters determined by target area
 - \circ $\,$ Three groups total to take three 15% images
 - Groups RAAN spaced to provide time between images (customer requirement)

Orbital Scheme: Visible/NIR

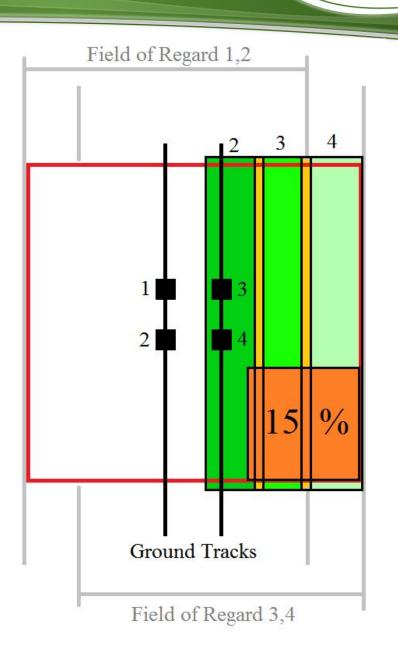

Latitude	0° - 50°	50° - 80°	80° - 90°
Orbit Type	Sun-Sync Repeat Gro	Polar Repeat Ground Track	
Altitude	567	km	554 km
Inclination	97.	90°	
No. of Planes	8	2	2
Total No. of Satellites	20	8	8

Imaging Constellation

Vis/NIR Imaging Scheme Pushbroom Scanner

Entire AOI Groups:

- Max off-nadir slew: 11.3 deg
- Swath width: 94 km
- Overlap: 3% between swaths
- Separate launches for each plane

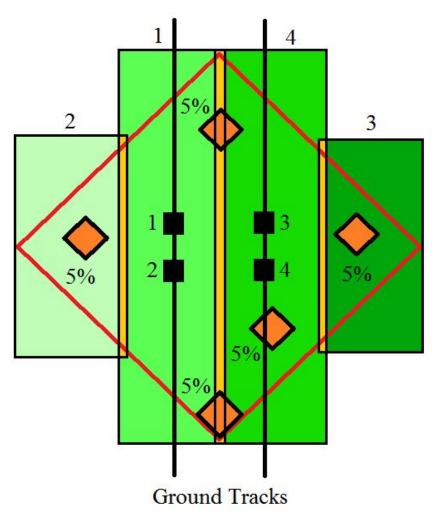


Imaging Constellation

VIS/NIR Imaging Scheme Pushbroom Scanner

15% Groups:

- Max off-nadir slew: 18 deg
- Swath width: 94 km
- Overlap: 3% between swaths


Orbital Scheme: Thermal IR

Latitude	0° - 80°	> 80°		
Orbit Type	Sun-Synchronous Repeat Ground Track	Polar Repeat Ground Track		
Altitude	567 km	554 km		
Inclination	97.7°	90°		
No. of Planes	2			
Total No. of Satellites	4			

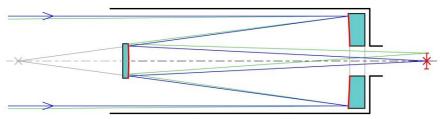
Imaging Constellation

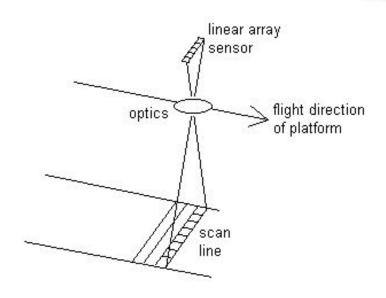
TIR Imaging Scheme Pushbroom Scanner

- Max off-nadir slew: 19 deg
- Swath width: 190 km
- Planes RAAN spaced
- Overlap: 3% between swaths
- 25% could be in as many as five 5% areas
- Providing more capability than required

Satellite Maneuvers Summary

- On-orbit station-keeping
- De-orbit in 5 years after 6 month lifetime
- SSC 1 N Monopropellant Thruster
- High Performance Green Propellant (LMP-103S)
- ΔV budget


Maneuver	Stationkeeping	De-Orbit	Total
Required ΔV	75 m/s	18 m/s	93 m/s


Imaging Constellation

Optical Payload

- Pushbroom sensor
 - Linear sensor array
- Reflecting telescope
 - Cassegrain design
 - Same optics for both Vis/NIR and TIR
 - Ø18cm x 40cm allocated space
- Number of Detector Elements
 - Vis/NIR: 22,000 x 6 bands
 - TIR: 4,300 x 6 bands

Spectral Bands of Interest

- Visible
 - 0.4-0.7 μm
- Near IR
 - 0.8-1.5 μm
- Middle Wave IR
 3-5 µm
- Long Wave IR
 - 8-12 μm

Vis	ible I	Infrared Measurement Region							
VBG	YOR			1		П	11		-
0.4	0.75	1.0	1.5	2.0	3.0	5.0	10	20	30
			1.161.11	12.0	yth in µ				

Image Data

- Vis/NIR Full Image:
- Uncompressed Data Volume: 30 GB
- Vis/NIR 15% Images:
- Uncompressed Data Volume: 8 GB

TIR 25% Images:

- Uncompressed Data Volume: 0.32 GB
 - Based on 45 m per pixel resolution

2:1 compression algorithm used on all images to be downlinked to ground stations

Imaging Satellite Communications

On-board system for downlinking:

- Ku-Band
- Wideband horn, 4.5 x 5.5 x 10.9 cm
- BPSK modulation

Ground system for downlinking:

- 2.3 m ground dish to downlink all satellites
- 48 dB peak gain

Link Budget Downlink of Images		
Frequency	13.75 GHz (Ku)	
Noise Temp	285 K	
Space Loss	180 dB	
Signal to Noise Ratio	9 dB	
Data Rate	400 Mbps	
Gain	13 dB	
Power (RF)	20 W	
Margin	3.3 dB	

Imaging Satellite Communications

On-board system for TT&C:

- UHF band
- Monopole whip antenna on-board, 20 cm length
- BPSK modulation

Ground system for TT&C:

- Utilizing same ground dish for imaging downlink and TT&C
 - \odot 14.7 dB peak gain for UHF

TT&C Link Budget	Downlink	Uplink	
Frequency	300	MHz	
Noise Temp	285 K		
Space Loss	146 dB		
Signal to Noise Ratio	9.5 dB	10.5 dB	
Data Rate	1 kbit/s		
Gain	-6 dB	14.7 dB	
Power (RF)	0.025 W	0.03 W	
Margin	10 dB		

ADCS: Actuators

- 4 Reaction Wheels and 3 Magnetorquers
- Pointing requirement for imaging: 0.3 degrees
 Dependent on swath width
- Pointing requirement for downlinking: 7.5 degrees
 Required to establish and maintain communication
- Max slew rate: 0.5 deg/sec
 - Derived from downlink tracking phase
- 2% settling time of 5 minutes

ADCS: Sensors

Star Tracker: 3-axis attitude knowledge

- Attitude knowledge: 0.03 degrees
 - Derived from 0.3 degree pointing requirement (industry standard)
- Fine knowledge required during imaging phase only
 Star tracker (baseline) falls out of imaging requirements at ~1.2 deg/sec
 - Angular rate sensors under review

CAL PO SAN LUIS O

Power and Mass Budgets

Total Mass: 9.5 kg

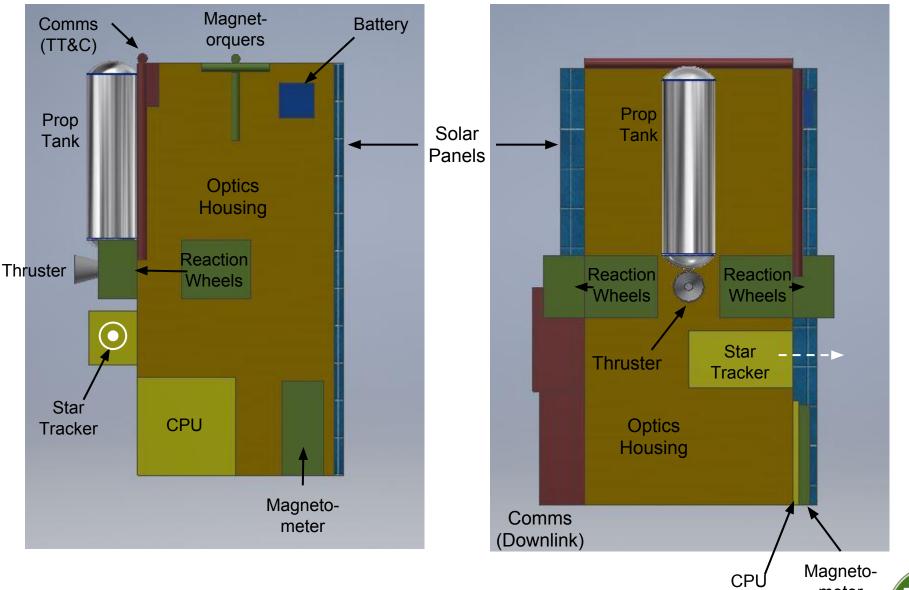
- Structure: 20% of total mass
- Optical payload estimate: 3 kg
- Propellant: 0.4 kg

Average Power Required: 10.5 W (per 1 day cycle)

- Peak Power: 150W (imaging/calibrating) for 200 seconds
- Body-Mounted Solar Panel
- Orient spacecraft perpendicular to sunlight



Imaging Constellation



S/C Mass: 9.5 kg

Dimensions: 28 x 27 x 44 cm

Imaging Constellation

Path Forward

- Optics
 - Cassegrain dimensions
 - Consider different telescopes for the different bands
- Specific wavelengths for bands of interest
- Focal plane assembly configuration
- Angular rate sensors
- Satellite Configuration
 - Thermal and Structural Analysis
- Thruster requirements and selection
- Redundancy and Failure Mitigation

Communications Constellation

Presenter: Alex Powaser

Customer Requirements

- The system shall provide repeater capability for 240 minutes/day
- The maximum time without repeater access is 120 minutes
- The system shall provide beyond line-of-sight communications capability to first responders
- The minimum communications window is 3 minutes

Major Trades

Trade	Status	Baseline
Orbit Altitude	Closed	625 km
Variable vs. Invariable Orbits	Closed	Variable
Antenna Type	Closed	4 monopole whips in phase quadrature

Orbital Scheme

Sats/Planes Code

• LEO altitude trade based on gain, ΔV to launch/deorbit, number of planes and satellites

Constellation Parameters and Allowable Errors

Altitude	Inclination	RAAN Spacing (Between Planes)	True Anomaly Spacing (Between Satellites)	Orbit Type
625 ± 7 km	Latitude ± 0.1°	Equal ± 6°	40°± 6°	Circular

Constellation Scheme vs Coverage Latitude

Latitude Bin	0°-10°*, 83-90°	10°-25°, 65°-83°	25°-65°
No. of Satellites	8	12	16
No. of Planes	2	3	4

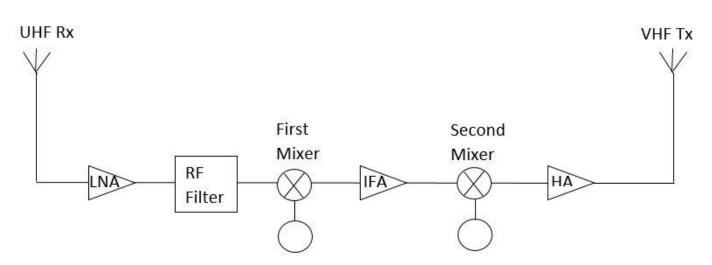
*0-8° covered by 8° inclination from Ascension launch site

Phasing Scheme

• Transfer orbit details

Semi-Major Axis	Eccentricity	Period
7175 km	0.0240	1.68 hours

- Phasing takes 16.8 hours
 - 3 orbits to phase each satellite with initial orbit to ensure perigee
- 90 m/s Δv required for phasing (to circularize)
 - Aerojet MPS-130 Thruster (discussed later)



Communications Constellation

Payload Design

• First responders using tactical UHF/VHF radios

- Based on Harris XL-200P
- UHF/VHF capability
- UHF repeater
 - UHF uplink/VHF downlink
 - 15 transceivers
 - Solid-state components
 - Frequency-Division Multiplexing (FDM) to handle channels

Communications Constellation

Link Budget	Uplink: Ground to Satellite	Downlink: Satellite to Ground	
Frequency	300 MHz (UHF)	137 MHz (VHF)	
Noise Temp	298	3 K	
Space Loss	138.5 dB	145.2 dB	
SNR Required	13 dB		
Data Rate	16000) bps	
Receiver Gain	0 dB	-1 dB	
Transmitter Gain	-1dB	OdB	
Power (RF)	2.5 W	0.45 W	
Margin	6 dB		

Link Budget

- Decisions:
 - No. of channels:15
 - Omni-directional Antennas
 - One for each frequency
 - Antenna type: 4
 monopole whips
 in phase
 quadrature

Doppler Shift and Encryption

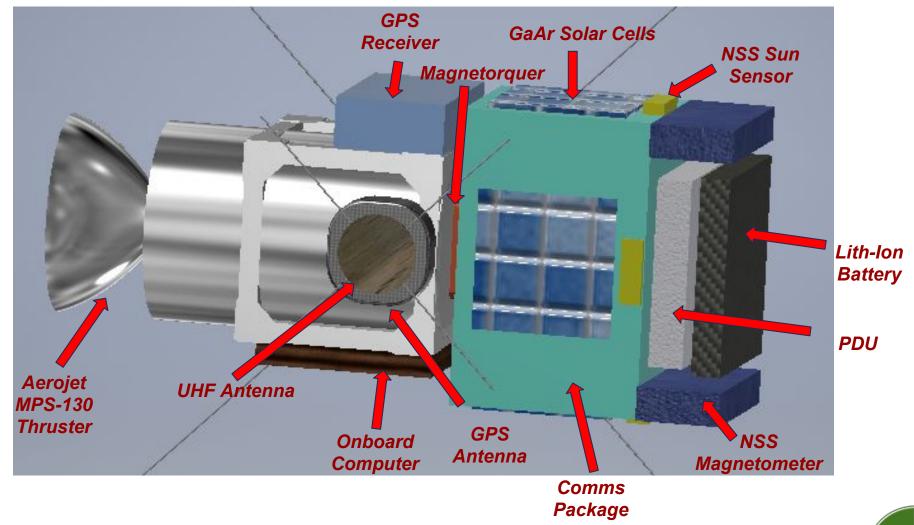
• Doppler Shift

- VHF max doppler shift seen by AOI: 2950 Hz
- UHF max doppler shift seen by S/C: 6461 Hz
- Channels spacing: 12.5 KHz
- Secure Communication
 - Only want people in the AOI to receive our communication
 - AES/DES encryption available on our baseline radio

Possible Propulsion System

- Aerojet MPS-130
 - Used for initial phasing and deorbit
 - Phasing: 90 m/s delta-v
 - Deorbit: 68 m/s delta-v
 - Drop perigee to 450 km
 - Deorbits < 5 years
 - F = 1.5 N of directed thrust
 - ISP = 240 s
 - Compact 1U and 2U Sizes
 - 3-Axis Stabilization Capabilities
 - High Performance Green Propellant

ADCS


- Thruster
- Magnetorquers
 - Detumble
 - Additional pointing for thruster
- Determination Sensor: TBD

Telemetry, Tracking, and Command

- Use existing payload antenna
 - Designated channel
- Sending/receiving health packets, coverage schedule, etc.
- Utilizing 2 communications ground stations

Communications Constellation

Configuration

CAL POLY

SAN LUIS OBISPO

Mass

• Total mass: 7.5 kg

Power

- Idle power: 5 W
 - In between comms intervals
- Communication power: 18.2 W
- Thrusting power: 35.7 W

Comms Component List Comms Mass-Power-Thermal

Launch

Presenters: Nic Lewis Ashton Murphy

Launch

Critical Considerations

- Time to launch
 - As quickly as possible from time of command to meet operational requirements
- Storability
 - System must remain fully ready for five years
- Versatility
 - Launch vehicle must be able to reach a range of target orbits

Derived Requirements from System Architecture

Payload	Imaging	Communications
Satellite Mass	9.5 kg	7.5 kg
Orbit	Circular 97 degree Sun-Synchronous	Elliptical transfer orbit Latitude-Inclination Matching

System Level Launch Vehicle Design Considerations

- Similar payload masses reduce discrepancies between ΔV requirements of different LV configurations
- Design Goal: Ensure All Requirements Are Satisfied by 1 Launch Vehicle Design

Launch

Major Trades

Trade	Status	Baseline
Launch Type: Air vs. Land vs. Sea	Closed	Launch from Land
Launch Sites: Build vs. Use Pre-existing	Closed	Build Launch Sites
Launch Vehicle: Design vs. Buy	Closed	<u>Design Launch Vehicle</u>
Storage Facility: Below vs Above Ground	Closed	Above Ground
Individual Stage Propellants	Open	<u>Liquid</u> Solid
2 vs. 4 Imaging Sats per LV	Open	4

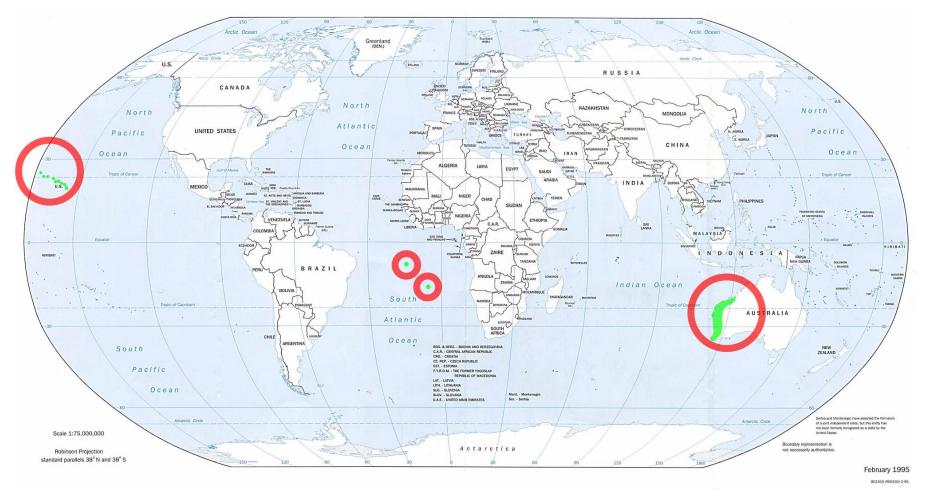
Launch

Launch Location Considerations

• Lat-matching not feasible from latitudes higher in value than orbit inclination

Desirable Latitudes

- Imaging launches:
 - Far from equator, into both ascending and descending nodes of the 97° sun-synch orbit
- Communications launches:
 - Close to equator, into 0-90° inclination


Launch Locations Evaluated by:

- Launch azimuths to meet required orbit inclinations
- Political stability (evaluated with fragility index)
- Range Safety
- Risk of natural disaster occurring at launch site
- Weather
 - Frequency of rain and stormy weather
 - Upper atmosphere wind shear
 - Average and maximum ground wind speeds

Ideal Imaging Launch Sites Found: **9** Sites Chosen: **4**

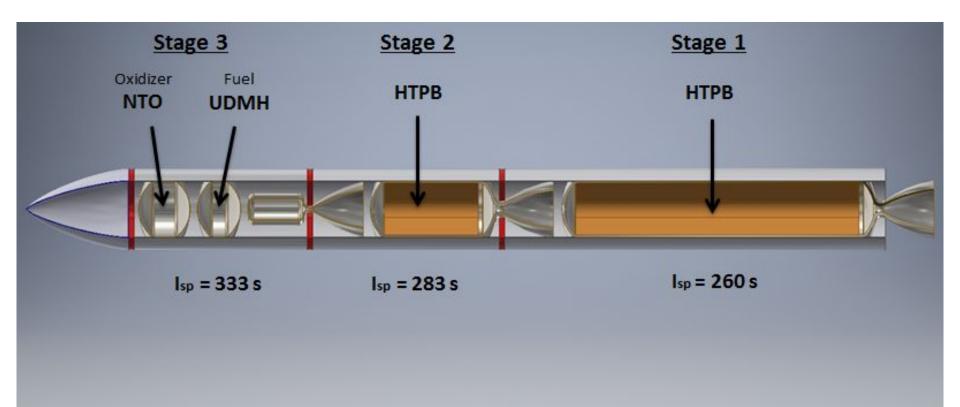
Ideal Launch Locations for our Architecture

Launch Pad Distribution

10 total launch pads distributed amongst 4 major launch sites

	Imaging	Comms
Hawaii (Oahu, Kauai)(<u>map</u>)	1	1
St. Helena (West and East sides of the island)(<u>map</u>)	1	1
Western Australia(<u>map</u>)	3	
Ascension (East side of the island)(<u>map</u>)	1	2

Pre Launch


Aiming for expedited launch procedure:

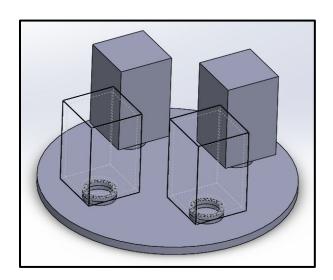
- Payload integration facility at each launch location
- Rolling maintenance checks for risk mitigation, reducing pre-flight check time
- Automating the following:
 - Facility operations
 - Clearing pad
 - Launch vehicle and payload system checks

Launch Staging Overview

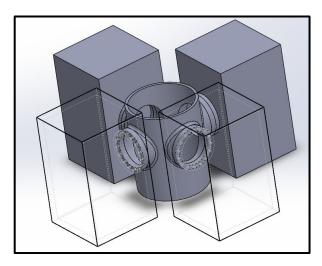
3-Stage Rocket Model

Slide 119: Liquid Propellent Trade

Goal: minimize ejection velocities
 O Rotational, positional, tumbling


Trade	Status	Baselaine
Satellite Mounting: Axial vs Radial	Open	N/A
Deployment Direction	Open	Nadir/Zenith
Payload Release: Pyros vs Actuators	Open	Actuators
Payload Eject: Spring vs Thrusters	Open	Spring

Satellite Mounting Considerations


<u>Axial</u>

- Aligned with longitudinal forces
- Better for structural integrity
- Larger displacements due to loads

<u>Radial</u>

- Ability to deploy (2) sats quickly
- High stress areas near rings
- Less maneuvers for upper stage
- Additional structural mass added

Imaging Requirements Flowdown

Launch vehicle shall:

- have capability to reach a range of orbits with a worst case orbit of 567 X 3167 km
 - Worst case deltaV to re-circularize= 0.575 km/s
- have capability to account for our worst case launch location
 - Worst case deltaV based on launch site= 0.067 km/s
- phase all imaging satellites

Altitude	Inclination	RAAN Spacing (between planes)	True Anomaly Spacing (from first to last sat)
554 or 567	90° or 97°	0.8° - 1.2°	6.5°
± TBD	± TBD	(depending on lat. of target)	± TBD

Imaging Launch

- 2 payload configurations for imaging launches are being considered
 - 2 satellites per vehicle VS 4 satellites per vehicle
- Configuration scheme greatly affects:
 - Number of launch vehicles
 - Vehicle commonality
 - Stage and total vehicle masses
 - Time for all satellites to reach target orbits

Imaging Launch - 9.5 kg per satellite

2 Sats Per Vehicle

- 12 total vehicles
- Payload mass = 25.7 kg
 - Accounting for:
 - Adapter= 15% of payload mass
 - Fairing= 20% of payload mass
- Does not require RAAN change
- Increases vehicle commonality
- Potential to extend timeline

4 Sats Per Vehicle

- 6 total vehicles
- Payload mass = 51.3 kg
 - Accounting for:
 - Adapter= 15% of payload mass
 - Fairing= 20% of payload mass
- Requires on orbit RAAN change
- Decreases vehicle commonality

Communications Requirements Flowdown

- Launch vehicle shall be capable of
 - reaching an elliptical orbit with perigee at 625 km and apogee at 918 km
 - \circ variable ΔV for the purpose of latitude matching

Altitude	Inclination	True Anomaly Spacing (Between Satellites)
625 ± 7 km	Latitude ± 0.1°	40°± 6°

CAL POLY

Communications Launch

- Vehicle will launch directly into elliptical phasing orbits
 - 625 x 918 km injection orbit
 - Individual satellites burn to circularize at perigee
- 4 Satellites per Launch Vehicle
 - 7.5 kg per satellite
 - Total mass to orbit: **40.5 kg**
 - Accounting for:
 - Adapter= 15% of payload mass
 - Fairing= 20% of payload mass
- Variable performance upper stage required for latitude matching
- 4 Total Comms launches

Launch Configuration

Mass Breakdown

	Comms	Imaging: 2 per LV	Imaging: 4 per LV
Total Payload (kg)	40.5	25.65	51.3
Stage 3 (kg)	269	208	417
Stage 2 (kg)	728	591	1,182
Stage 1 (kg)	2,655	2,262	4,525
Totals (kg)	3,693	3,088	6,176

<u>ΔV Breakdown</u>

*Payload Mass Includes Payload Adapter and Fairing

*Assuming 0.1 mass fraction per stage

Moving Forward

- Closing payload configuration study
- Closing upper stage propellant study
- Currently acquiring loading and trajectory program (ASTOS-AeroSpace Trajectory Optimization Software)
- Vibration and acoustic analysis tools
- Sizing and configuration of members and components
- Finalization of launch location/launch pad distribution
- Fairing design

• System wrap up

- 40 Satellites
 - 24 imaging satellites
 - 16 communications satellites
- 4 launch sites
- Able to meet all imaging, communications, and timeline requirements
- Path Forward
 - Margin allocation consistency
 - Contingency plans
 - Cost modelling
 - Parametric cost estimation model
 - Standardizing hardware across vehicles

Questions/Discussion Session

Support Slides

Major Trades

LEO vs. MEO/GEO

Choice(s) Considered	Pros	Cons	Status
A. LEO	QuickSmall satellitesDe-orbits fast	 High number of planes and sats Quick pass times 	Accepted
B. MEO/GEO	 Reduced number of satellites Lengthy Pass Times 	 Expensive Large satellites Response time Excessive for 6 months 	Rejected

Circular vs. Elliptical Orbits

Choice(s) Considered	Pros	Cons	Status
A. Circular	 No orbital maintenance 	 Quick passes over target 	Accepted
B. Elliptical	 Increased time over target 	 High altitude apogee Orbit corrections necessary 	Rejected

Variable vs. Invariable Orbits

Choice(s) Considered	Pros	Cons	Status
A. Variable	 Reduces number of planes/ launches 	 Causes delays 	Accepted
B. Invariable	 Faster response time Orbits pre-selected 	 Greatly increases number of planes/ sats 	Rejected

Separate Communications/Imaging vs. Combined

Choice(s) Considered	Pros	Cons	Status
A. Separate Comms/Imaging	 Less complex satellites Small components Different requirements 	 More satellites/ planes 	Accepted
B. Combined Functionality	 Reduced number of satellites 	 Large, complex satellites 	Rejected

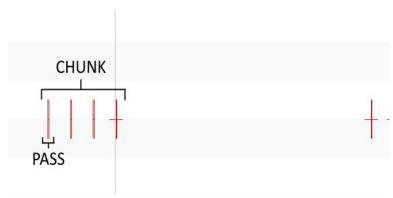
Separate Imaging vs. Combined Imaging Function

Choice(s) Considered	Pros	Cons	Status
A. Separate Imaging Functions	 Decreased complexity per satellite 	 More satellites required Increases cost 	Rejected
B. Combined Imaging Functions	 Fewer satellites Reduced cost/ No. of launches 	 Complex thermal subsystem Adds size/ mass 	Accepted

Correcting Orbits Vs. Non-Correcting Orbits - COMMS

Choice(s) Considered	Pros	Cons	Status
A. Correcting Orbits	 Longer pass times towards EOL 	 Addition of on board propulsion 	Rejected
B. Non-Correcting Orbits	 No need for on board propulsion 	 Lower pass times towards EOL 	Accepted

Correcting Orbits Vs. Non-Correcting Orbits - IMAGING


Choice(s) Considered	Pros	Cons	Status
C. Correcting Orbits	 Maintain daily ground track 	 More mass for propulsion system 	Accepted
D. Non-Correcting Orbits for	 No need for on board propulsion 	 Drag decrease altitude J2 affects ground track 	Rejected

Vehicle Specific Trades

- The 500x500 km and all COE combinations defined
- Pass = all target area in view (with elevation angle)
- Passes below 3 minutes removed, "chunk" defined
- Check if time between passes in chunk is <120 minutes
 - Satellites added (equal spacing in true anomaly), repeat
- 24 hours/chunk length for continuous daily coverage
 - Planes spaced out equally in RAAN
- Check if total pass time for all sats, all planes <240 minutes
 - Satellites added, repeat

Comms Satellite Altitude Trade

Alt.												
	800	775	750	725	700	675	650	625	600	575	550	525
Max #												
Planes	4	4	4	7	5	5	5	5	5	8	8	8
Max #												
Sats	10	11	12	16	14	14	15	15	16	22	23	25
Gain:												
(300												
MHz)	5.3	5.1	4.8	4.6	4.3	4.1	3.8	3.5	3.2	2.9	2.6	2.2
Area-to-	0.43	0.33	0.25	0.18	0.13	0.1	0.07	0.05	0.04	0.03	0.02	0.01
mass	0.40	0.00	0.20	0.10	0.10	0.1	0.07	0.00	0.04	0.00	0.02	0.01
Deorbitin												
g dV												
(km/s)	0.217	0.204	0.191	0.178	0.164	0.151	0.138	0.124	0.111	0.097	0.084	0.070

Antenna Trade - OPEN

Antenna	Beamwidth (deg)	Size	Deployment Necessity	Notes
Helix	120.5	3.98E-10 m^3 (Volume)	Yes	
ММА	150		No	Operates in 2-3 GHz.
Patch		10.2 cm	No	Operates in 2-3 GHz
Dipole	90	Small	Yes	
Monopole	90	.25 m (length)	Yes?	Up to 1.5 dB
Omni	360	Small	No	Avg. 0 dB can be -1 dB
Turnstile	180	~18 cm	Yes	Similar to Omni

Possible Engines

Make / Model	Drive Type	Propellant Type	Engine Mass (kg)	Thrust (N)	Exhaust Velocity (m/s)	ISP (s)	Power Required (W)	Weight Flow Rate (wdot = N/s)	Mass Flow Rate (kg/s)
Aerojet: MR-103	Mono	Hydrazine	0.33	1	2000	224	13.7	0.0049	0.0005
Aerojet: MR-111	Mono	Hydrazine	0.33	5.3	2208	229	13.6	0.024	0.0024
TRW: MRE-4	Mono	Hydrazine	0.5	9.8	2134	217	30	0.045	0.0046
Aerojet: MR-106	Mono	Hydrazine	0.52	30.7	2362	235	49.15	0.13	0.013
Aerojet: R-1E	BiProp	MMH/ NTO	2	111	2775	280	36	0.39	0.04
Vacco: Cold Gas x8	Mono	Hybrid Green (R134a)	0.1	0.002	392.4	40	5	0.00005	0.0000051
Busek: BGT X5	Mono	Green (AF-M315E)	1.5	0.5	2159	220	20	0.0023	0.00023
Busek: BGT5	Mono	Green (AF-M315E)	2	5	2256	230	50	0.022	0.0026
SSC: 1 N HPGP	Mono	LMP-103s	0.34	1	2305.522914	235	8	0.004255319149	
SSC: 5 N HPGP	Mono	LMP-103s	0.36	5	12262.5	250	10	0.02	
Aerojet MPS 130	Mono	AF-M315E	2.2	1.5	2354.4	240	7	0.00625	0.000637

CAL POLY

SAN LUIS

Subsystem	Components	Mass (kg)	Thermal Output (W)	Power Req'd (W)	POWER DUTY CYCLE (%)	SUBSYSTEM EFFICIENCY (%)
ADCS	Mags	0.5	0.48	2	40	40
	Attitude Sensor	0.1	0.5	1	100	50
Structure	Frame/ Harnessing (~30% of total mass)	1.38	0.3			
	Drag Sail (TBD)	0.5	0.001	0.5	1	80
Thermal	Heater	0.01	0.33	1	33	0
	Antenna	0.1	0.025	0	5	50
Comms Payload	Amplifier/ filter	0.5	2.5	13.5	5	50
	Transponder(s)	0.085	0	15.5	J	30
CD&H	Computer	0.05	0.0025	0.5	5	90
Power Units	Batteries (Lithium example)	0.215	0.5			
	Solar Panels (Cells + Structure)	0.2				
Totals		~ 5	~ 2	Avg: ~3 Max: ~20		

Comms Mass-Power-Thermal

	Comp	onents		The second Contrast from	Davis David Can	POWER	SUBSYSTEM
Subystem	TYPE	NAME	Mass (kg)	Thermal Output (W)	Power Req'd (W)	DUTY CYCLE (%)	EFFICIENCY (%)
ADCS	ACS Package (WITH PROP)	BUILT IN WITH MPS-130 THRUSTER					
	ACS Package (WITHOUT PROP)	Magtorquer - MT01 Compact Magtorquer	0.5	1	2	10	50
	Attitude Sensor (WITH PROP)	NSS Magnetometer	0.205	0.00035	0.007	100	95
	Attitude Sensor (WITHOUT PROP)	NSS Cubesat Sun Sensor	0.205	0.00035	0.007	100	95
	Engine	Aerojet MPS-130 Monoprop	2.2	21	30	2	30
Propulsion	Propellant (phasing ~126)		0.54				
	Propellant (deorbit ~68)	Green Prop	0.28				
	Tank, valves, etc.		0.4				
Structure	Frame/ Harnessing (~30% of total mass) (WITH PROP)		2.1702	0.3			
	Frame/ Harnessing (~30% of total mass) (WITHOUT PROP)		1.2462	0.3			
	Drag Sail (WITHOUT PROP) (x4)	CanX-7	1.2	0.004	2	1	80
Thermal	Heater	Random Resistor	0.01	1	1	33	0
Comms Payload	Antenna	Patch with Quad Whips	0.1	0	0	5	50
	Transceiver(s) (x15)		1.275	6.75	13.5	5	50
CD&H	Computer		0.05	0.05	0.5	5	90
	Batteries (WITH PROP)	Li-lon	0.39	0.5			
	Batteries (WITHOUT PROP)	EHON	0.23	0.5			
Power Units	Solar Arrays (WITH PROP)	Online Amerida	0.1				
	Solar Arrays (WITHOUT PROP)	Galium Arsenide	0.1				
	PDU	10W Power Bundle (PDU+Battery)	0.242	0.75	3	100	75
GPS	Antenna	Tuna Can	0.082	0	0	95	80
Gru	Receiver		0.16	0.2	1	95	80
TOTALS	(With Prop)		MASS: 8.2042	AVG THERMAL OUTPUT : 30.55035	AVG POWER: 5.587	MAX POWER REQ'D: 35,507	MAX THERMAL OUTPUT : 30,55035
			8.2042 MASS:	AVG THERMAL OUTPUT :	AVG POWER:	MAX POWER REQ'D:	MAX THERMAL OUTPUT :
TOTALS ()	Vithout Prop)		5.4002	10.55435	5.207	21.007	MAA THERMAL OUTPUT :

Back: Communications Constellation

CAL POLY

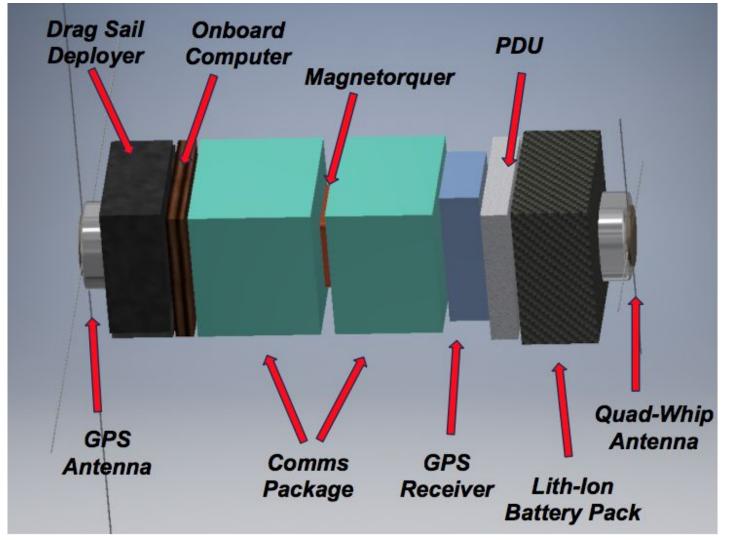
SAN LUIS

Comms Component List

Subsystem	Components		Dimensions (m x m x m		Volume	
		X Y Z			(cubic cm)	
4065	Magnetorquer	0.1	0.095	0.017	161.5	
ADCS	Attitude Sensor	0.05	0.019	0.002	1.9	
GPS	Receiver	0.09398	0.05588	0.02604	136.7517265	
075	Antenna	0.0528	0.0528	0.0175	48.7872	
	Frame/ Harnessing (~30% of total mass)				NA	
Structure	Drag Sail/ Deployer (Non-Deployed) (TRIANGLE)	0.09	0.09	0.04	324	
T h	Heater (TBD				Negligible	
Thermal	Radiator (TBD)				NA	
	Antenna	0.05	0.05	0.002	5	
Comms Payload	Transponder/ Transeiver (1 channel)	0.096	0.09	0.1	864	
CD&H	Computer	0.096	0.09	0.012	103.68	
	Batteries (Lithium example)	0.1	0.1	0.05	500	
Power Units	Solar Panels (Cells + Structure)	0.066	0.066	0.005	21.78	
	PDU	0.095	0.09	0.0175	149.625	

Back: Communications Constellation

10 5


CAL POLY

SAN LUIS OBISPO

Components

- Comms Payload: 15 solid state UHF/VHF radios
- Antennas: 2 sets of 4 whips in phase quadrature (one for UHF and one for VHF)
- Propulsion: Aerojet MPS-130
- ADCS:
 - Determination Sensor: TBD
 - Thrusting: Aerojet MPS-130 integrated ACS package
 - Normal Op: Magnetorquers
- CD&H: Cubesat Space Processor
- Solar Arrays: Body-mounted GaAr cells
- Batteries: Li-ion
- TT&C: UHF Transceiver
- GPS: TBD
- PDU: TBD

Configuration w/o Prop

10

CAL POLY

SAN LUIS OBISPO

Metrics Considered:

- Data Generation
- Sensor Size
- Payload Size
- No. of Satellites
- Complexity
- Data Downlink
- Power Cost

- Pass Utilization
- Mass
- Size
- Power Requirement
- Control Capacity
- Phasing Time
- Phasing DeltaV

Sensor Type Trade

	VISNIR					TIR			
Metrics	Weight	Pushbroom	Pushwhisk	Matrix Starer	Weight	Pushbroom	Pushwhisk	Matrix Starer	
Dwell Time	0.4	7	6	8	0.5	7	6	10	
Mechanical Complexity	0.6	7	5	4	0.7	6	4	3	
Pointing Requirements	0.3	7	8	5	0.5	6	9	8	
Optical Complexity	0.5	5	6	5	0.4	4	6	4	
Cost	0.4	3	4	3	0.4	4	5	3	
Smear	0.3	5	4	3	0.6	4	3	5	
Reliability	0.7	8	6	6	0.5	8	6	5	
Power	0.3	9	8	7	0.3	8	7	6	
Useful Data (%)	0.7	7	7	9	0.4	8	8	10	
Operational Delay	0.4	8	6	8	0.4	5	4	6	
Total		30.7	27.5	27.5		27.9	26.4	27.6	

0 9

CAL POLY

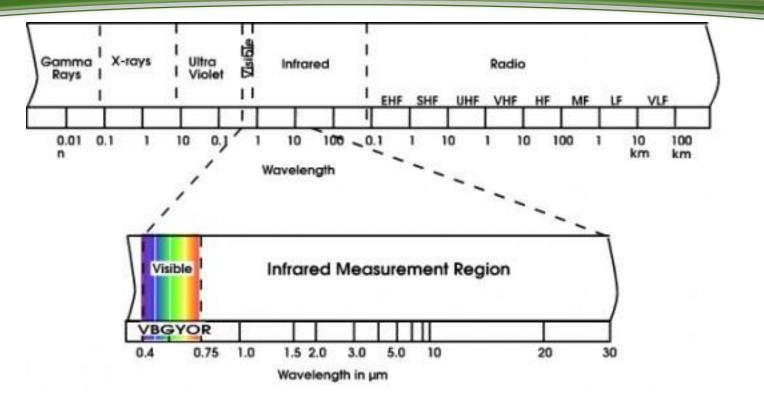
SAN LUIS OBISPO

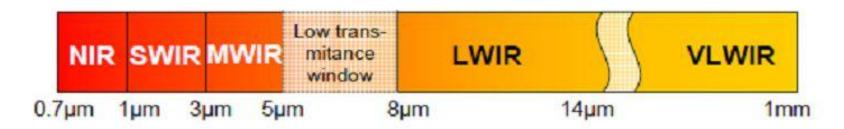
Metrics Considered:

- Ground track differences
- Image quality
- Redundancy
- Launch vehicle requirements

Metrics Considered: Fully Actuated Control System

	Vusek Thrusters (12)	Reaction Wheels (4) and Magnetometer (1)
Power, Watts	20	1.5
Mass, Kg	6	0.35
Jitter	No	Yes


- Aligned 57 degrees off the xy plane of the spacecraft body frame
- Momentum budget: 0.1 Nms
- Dimensions
 - Radius: 3.5 cm
 - Thickness: 2.5 cm
 - Mass: 0.35kg
 - Max Angular Momentum: 0.1 Nms


Duty cycle

Maneuver Type	Detumble	Image	Downlink	Stationkeep	Account for disturbances
Accumulated Momentum (Nms)	0.038	0.002	0.012	0.002	0.015/day

Spectral Wavelengths

CAL POLY

SAN LUIS OBISPO

• Baseline Assumptions for Battery/Solar Panel Sizing

	Assumption	Rationality
Solar Cell BOL Absorptivity	0.25	Reasonable (eg. GaAr TJ)
Solar Cell Degradation	2.75 %/yr	Reasonable (eg. GaAr in LEO)
Packing Density	0.78	Conservative
Battery Charge/Discharge & PDU Efficiencies	90%	Unsure
Battery Energy Density	145 Whr/Kg	Reasonable (eg. Li-Ion)
Battery Max. Depth of Discharge	40%	Reasonable

Imaging Satellite

Component	Temperature Range (K)
Reaction Wheels	233 to 358
Magnetorquers	238 to 348
Attitude Sensor	233 to 353
Position Sensor	263 to 323
Propellant	263 to 323
Tank/Valves for Propellant	244 to 344
Structure Frame	078 to 366
Optics	263 to 323
Comms Equipment	233 to 353
CD&H Amplifiers	228 to 358
CD&H Computer	218 to 398
Batteries	273 to 318
Solar Panels	173 to 398

Ground Station Type

Metric	MOBILE	FIXED	WEIGHT	Mobile Total	Fixed total	JUSTIFICATION
Before Delivery:						
Minimize staffing	7	4	0.3	2.1	1.2	lower cost
Storage:						
Ease of storability	8	5	0.3	2.4	1.5	less space
Minimizes maintenance	6	4	0.6	3.6	2.4	building needs more maintenance than truck/suitcase
Disaster Occurs - 24 hours:						
Eases transportation	3	10	0.6	1.8	6	fixed does not need transportation
Minimizes transportation time	3	10	0.8	2.4	8	
Minimizes setup/deployment deployment time	8	9	0.8	6.4	7.2	
Capable of sending signal	5	5	1	5	5	
Minimize preparation time	8	9	0.8	6.4	7.2	
Mission - 6 months:						
Minimizes maintenance	8	7	0.7	5.6	4.9	
Minimizes staff	5	8	0.5	2.5	2.5	
Minimizes time to sending signal to sats	8	4	0.8	6.4	3.2	ability to send 15% cmd
Capable of sending signal	0	0	1	0	0	
End of Mission:						
Ease of disposability	0	0	0.2	0	0	
Totals				44.6	49.1	

CAL POLY

SAN LUIS OBISPO

LV Baseline

What our **Closed** Trades Determined

- Build our own launch vehicles
- Build our own launch sites
- Land launch

What our **Open** Trades Determined... So far

- Separate launch vehicle configurations for imaging and comms satellites
- HTPB as solid fuel option
- MMH/N2O4 as liquid fuel option

Decision: Build

- LV purchase is unprecedented
- Buying ICBMs is difficult
- Will need a large number and most LV manufacturers don't have the capability to build that many
- Difficult to buy a launch vehicle and use your own operations system
 - Almost all companies that manufacture LVs require you to use their operating systems
- Building our own LV allows for customization

Decision: Build

- Can't use any government or military infrastructure
 Eliminates a good number of pre-existing launch sites
- 24 hour requirement means optimal launch locations are limited
 - Only 9 areas that meet our criteria

Pre-Launch Timeline

T-6 hours	Launch Provider Informed of Disaster	
	Personnel Called Out to Launch Site	
T-4.5 hours	Pad Prep Begins	Personnel given 90 min to commute
	Satellite Prep Begins	Payload processing will be mostly complete, only minimal work done right before launch: battery installation, propellant loading, etc. Satellite could possibly already be on adapter, depending on design
	LV Prep Begins	Flight termination system installation, remove before flight items, etc. Vehicle could possibly already be mated to the strongback, depending on launch design.
T-2.5 hours	Satellite Prep Ends	Satellite given 2 hours to prep
	LV Prep Ends	LV given 2 hours to prep, fts usually given a full day, hence why it is given the most amount of time.
	LV Vertical	Accounting for 30 min to get LV vertical on pad
	Pad Clear	Accounting for 1 hour to clear pad and start checks
	LV Checks Begin	
T-1 hour	LV Prop Load Begins	1 hour given to load prop
Т-0	Launch	

Metric	Air*	Land	Sea	Weight
Development Cost	5	8	4	0.6
Maintenance Cost	6	8	3	0.6
Launch Timeliness	5	7	3	1
Regulations	4	6	8	0.4
Complexity	4	9	5	0.8
# launches from each site	3	8	7	0.4
Payload Size	5	9	8	0.7
People Risk	6	8	9	0.3
Launch Location	8	5	8	0.5
Total	26.9	40.6	29.5	

*Not possible if high altitude is required

CAL POLY

SAN

Fuel:	lsp (sec)	Density (kg/m³)	Storability:	Cost/Availability:	Toxicity Level:	Value:
Weights:	0.7	0.7	1	0.7	0.8	value.
НТРВ	260	1854.553615	Good 5+ years	~16 \$ / kg	Moderate	18.2
IIIFD	4	5	6	5	3	10.2
	220	1605.434473	NG leaks	Moderate	Bad	10.6
DB	3	3	2	4	2	10.0
PBAN	260	1771.513901	Good 10+ years	~6 \$ / kg	Moderate	18.2
PBAN	4	4	6	6	3	10.2
OTED	260	1771.513901	Good 10+ years	~70 \$ / kg	Moderate	16.8
СТРВ	4	4	6	4	3	10.0

- HTPB was selected for baseline tests due to its performance parameters
- PBAN propellant is the most affordable.
- HTPB has slightly better performance metrics for slightly more cost.

Fuel/Ox:	lsp (sec)	Density (kg/m³)	Storability:	Cost/Availability:	Toxicity Level:	Value:
Weights:	0.7	0.7 1		0.8	0.8	value.
MMH/N2O4	280	1.80556	Good storage properties	Very expensive	Bad	15.1
	5	6	5	2	1	
UDMH/N2O4	277	1.140794224	Most stable Hydrazine	Very expensive	Moderate	16.3
	5	4	6	2	3	
Hydrazine/H2O2	269	1.219330855	Worse temperature range	Not used on many engines	Bad	12.7
	4	5	4	1	2	
Hydrazine/N2O4	286	1.195804196	Worse temperature range	Very expensive	Bad	14.1
	6	5	4	2	1	

- MMH/N2O4 was selected for baseline tests due to performance parameters
- MMH/N2O4 has the best performance metrics but is the most toxic
- UDMH/N2O4 is the least toxic of the hydrazine family but has lower performance metrics

Fuel	Туре	lsp (s)	Density (kg/m3)	Mission Cost (millions of \$)	Toxicity
LMP-103s	monoprop	~285	1.227e3	~5.88	Not toxic
Hydrazine	monoprop	~260	1.021e3	~6.04	High
UDMH/NTO	biprop	~333	1.140e3	~4.32	High

• Mission cost calculated for third stage of launch vehicle

Liquid Monopropellant Trade

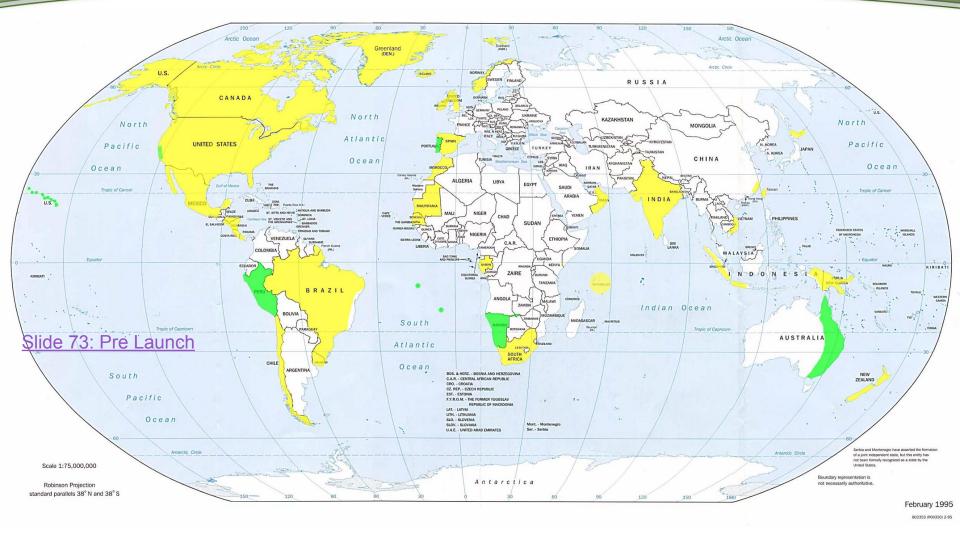
Fuel	Туре	lsp (s)	Density (kg/m3)	Mission Cost (\$)	Toxicity
LMP-103s	monoprop	~285	1.227e3	~192,000	Not toxic
Hydrazine	monoprop	~260	1.021e3	~201,000	High

• Mission Cost calculated for mass of satellite prop

CAL POLY

Launch Derived Requirements

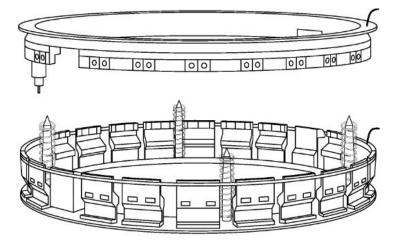
	Communications	Imaging - Visual/NIR	Imaging - Thermal
Satellite Mass (kg)	13	75 or 215	75
Injection Orbit	625 km Elliptical	567 km Sun-Synch Circular	
Satellites per Plane	3	20 or 10	4
Number of Planes	2-5	4	1



CAL POLY

SAN

All Possible Launch Locations

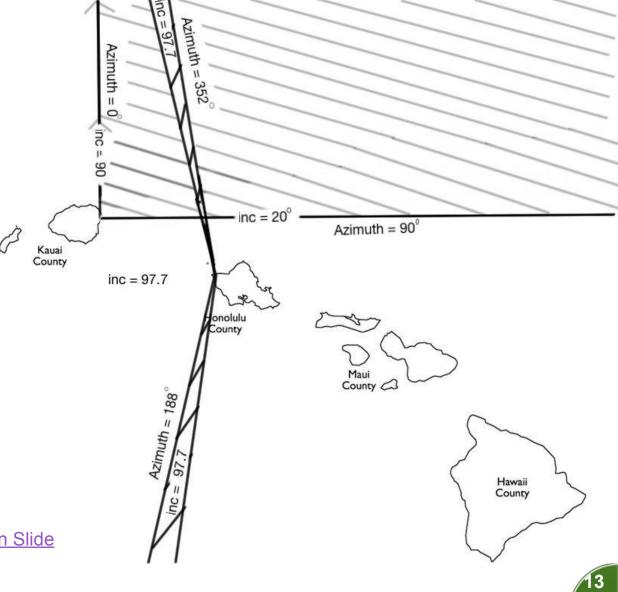


Launch

Payload

- Satellites want to minimize ejection velocities
 - Rotational, positional, tumbling
- Direction of deployment consideration
 - Affects sat configuration on LV
 - Ideal to deploy nadir or zenith
- Pyros vs actuators for release mechanism
 - Actuators produce no shock but require more power
- Spring system vs thrusters for ejection
 - Researching lightband separation system

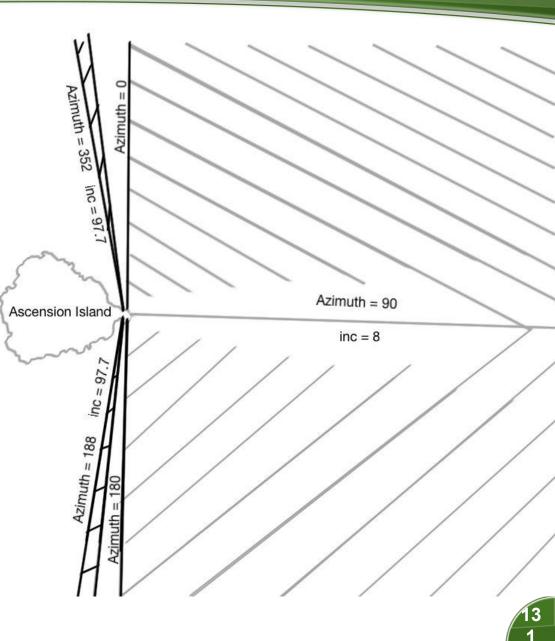
Launch Configuration


ΔV Breakdown (km/s)

	Comms	Imaging: 2 per LV	Imaging: 4 per LV
Payload Mass (kg)	40.5	25.6	51.3
Stage 3	6.12	6.85	6.85
Stage 2	2.40	2.57	2.57
Stage 1	2.40	2.57	2.57
Totals	10.97	11.99	11.99

Mass Breakdown

Hawaii Launch Range

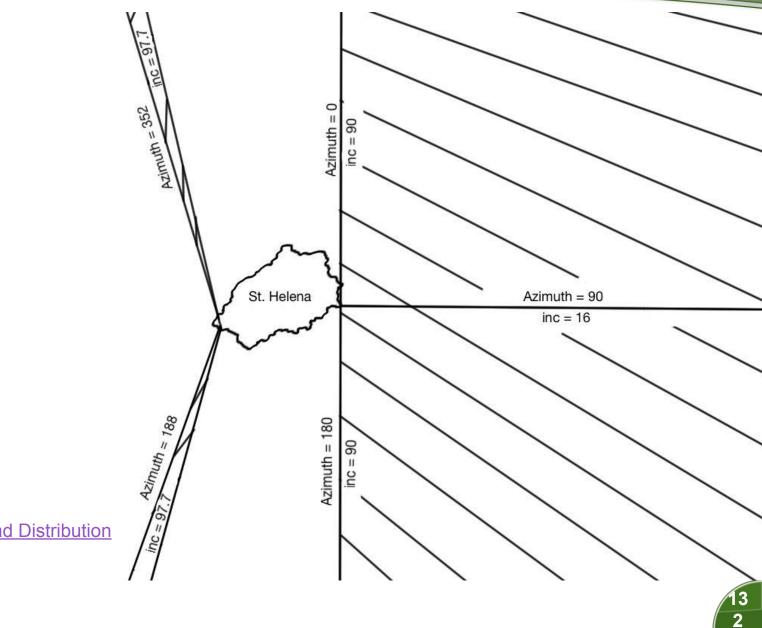

CAL POLY

SAN LUIS OBISPO

0

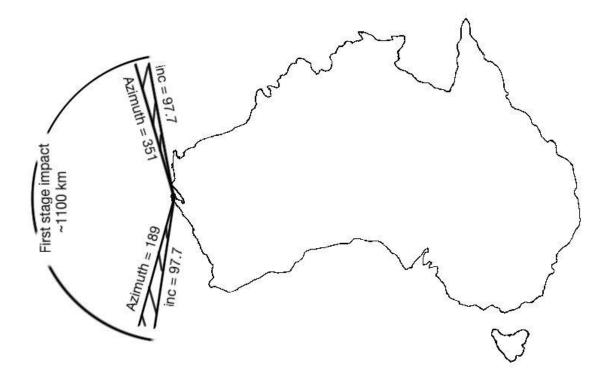
Return to Launch Pad Distribution Slide

Ascension Launch Range


CAL POLY

SAN LUIS OBISPO

Return to Launch Pad Distribution Slide


St. Helena Launch Range

CAL POLY

Return to Launch Pad Distribution Slide

Australia Launch Range

